Showing 1 - 3 of 3 results
1.
Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling.
-
Multamäki, E
-
Nanekar, R
-
Morozov, D
-
Lievonen, T
-
Golonka, D
-
Wahlgren, WY
-
Stucki-Buchli, B
-
Rossi, J
-
Hytönen, VP
-
Westenhoff, S
-
Ihalainen, JA
-
Möglich, A
-
Takala, H
Abstract:
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.
2.
Illuminating a Phytochrome Paradigm- a Light-Activated Phosphatase in Two-Component Signaling Uncovered.
-
Multamäki, E
-
Nanekar, R
-
Morozov, D
-
Lievonen, T
-
Golonka, D
-
Wahlgren, WY
-
Stucki-Buchli, B
-
Rossi, J
-
Hytönen, VP
-
Westenhoff, S
-
Ihalainen, JA
-
Möglich, A
-
Takala, HA
Abstract:
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While AgP1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes inform the use of light-controllable histidine kinases and phosphatases for optogenetics.
3.
Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
Abstract:
Optogenetic tools allow regulation of cellular processes with light, which can be delivered with spatiotemporal resolution. In previous work, we used cryptochrome 2 (CRY2) and CIB1, Arabidopsis proteins that interact upon light illumination, to regulate transcription with light in yeast. While adopting this approach to regulate transcription in mammalian cells, we observed light-dependent redistribution and clearing of CRY2-tethered proteins within the nucleus. The nuclear clearing phenotype was dependent on the presence of a dimerization domain contained within the CRY2-fused transcriptional activators. We used this knowledge to develop two different approaches to regulate cellular protein levels with light: a system using CRY2 and CIB1 to induce protein expression with light through stimulation of transcription, and a system using CRY2 and a LOV-fused degron to simultaneously block transcription and deplete protein levels with light. These tools will allow precise, bi-directional control of gene expression in a variety of cells and model systems.