1.
Shaping an evanescent focus of light for high spatial resolution optogenetic activations in live cells.
Abstract:
Confining light illumination in the three dimensions of space is a challenge for various applications. Among these, optogenetic methods developed for live experiments in cell biology would benefit from such a localized illumination as it would improve the spatial resolution of diffusive photosensitive proteins leading to spatially constrained biological responses in specific subcellular organelles. Here, we describe a method to create and move a focused evanescent spot, at the interface between a glass substrate and an aqueous sample, across the field of view of a high numerical aperture microscope objective, using a digital micro-mirror device (DMD). We show that, after correcting the optical aberrations, light is confined within a spot of sub-micron lateral size and ∼100 nm axial depth above the coverslip, resulting in a volume of illumination drastically smaller than the one generated by a standard propagative focus. This evanescent focus is sufficient to induce a more intense and localized recruitment compared to a propagative focus on the optogenetic system CRY2-CIBN, improving the resolution of its pattern of activation.
2.
Force propagation between epithelial cells depends on active coupling and mechano-structural polarization.
-
Ruppel, A
-
Wörthmüller, D
-
Misiak, V
-
Kelkar, M
-
Wang, I
-
Moreau, P
-
Méry, A
-
Révilloud, J
-
Charras, G
-
Cappello, G
-
Boudou, T
-
Schwarz, US
-
Balland, M
Abstract:
Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.