1.
Dynamic control of neural stem cells by bHLH factors.
Abstract:
During brain development, neural stem cells change their competency to give sequential rise to neurons and glial cells. We found that expression of the basic helix-loop-helix (bHLH)-type cell-fate determination factors Ascl1, Olig2, and Hes1 is oscillatory in neural stem cells. Conversely, sustained expression of these factors mediates cell-fate determination. Optogenetic analyses suggest that oscillatory expression regulates maintenance and proliferation of neural stem cells, and that sustained expression induces cell-fate determination. Expression of the Notch ligand Delta-like1 (Dll1), which is controlled by Hes1 and Ascl1, is also oscillatory in neural stem cells. Mathematical modeling showed that if the timing of Dll1 expression is changed, Hes1 oscillations are severely dampened, resulting in impaired maintenance and proliferation of neural stem cells and causing microcephaly. Another bHLH factor, Hes5, also shows oscillatory expression in neural stem cells. Hes5 overexpression and knock-out result in abnormal Hmga1 and Hmga2 expression, which are essential for timings the switching of neural stem-cell competency. These data indicate that oscillatory expression of bHLH factors is important for normal neural stem-cell function in the developing nervous system.
2.
Oscillatory Control of Notch Signaling in Development.
Abstract:
The Notch effectors Hes1 and Hes7 and the Notch ligand Delta-like1 (Dll1) are expressed in an oscillatory manner during neurogenesis and somitogenesis. These two biological events exhibit different types of oscillations: anti-/out-of-phase oscillation in neural stem cells during neurogenesis and in-phase oscillation in presomitic mesoderm (PSM) cells during somitogenesis. Accelerated or delayed Dll1 expression by shortening or elongating the size of the Dll1 gene, respectively, dampens or quenches Dll1 oscillation at intermediate levels, a phenomenon known as "amplitude/oscillation death" of coupled oscillators. Under this condition, both Hes1 oscillation in neural stem cells and Hes7 oscillation in PSM cells are also dampened. As a result, maintenance of neural stem cells is impaired, leading to microcephaly, while somite segmentation is impaired, leading to severe fusion of somites and their derivatives, such as vertebrae and ribs. Thus, the appropriate timing of Dll1 expression is critical for the oscillatory expression in Notch signaling and normal processes of neurogenesis and somitogenesis. Optogenetic analysis indicated that Dll1 oscillations transfer the oscillatory information between neighboring cells, which may induce anti-/out-of-phase and in-phase oscillations depending on the delay in signaling transmission. These oscillatory dynamics can be described in a unified manner by mathematical modeling.