Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.

blue bPAC (BlaC) OaPAC zebrafish in vivo Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 17 Aug 2023 DOI: 10.7554/elife.83975 Link to full text
Abstract: Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.
2.

Hydrogen Bonding Environment of the N3-H Group of Flavin Mononucleotide in the Light Oxygen Voltage Domains of Phototropins.

blue LOV domains Background
Biochemistry, 5 Jun 2017 DOI: 10.1021/acs.biochem.7b00057 Link to full text
Abstract: The light oxygen voltage (LOV) domain is a flavin-binding blue-light receptor domain, originally found in a plant photoreceptor phototropin (phot). Recently, LOV domains have been used in optogenetics as the photosensory domain of fusion proteins. Therefore, it is important to understand how LOV domains exhibit light-induced structural changes for the kinase domain regulation, which enables the design of LOV-containing optogenetics tools with higher photoactivation efficiency. In this study, the hydrogen bonding environment of the N3-H group of flavin mononucleotide (FMN) of the LOV2 domain from Adiantum neochrome (neo) 1 was investigated by low-temperature Fourier transform infrared spectroscopy. Using specifically (15)N-labeled FMN, [1,3-(15)N2]FMN, the N3-H stretch was identified at 2831 cm(-1) for the unphotolyzed state at 150 K, indicating that the N3-H group forms a fairly strong hydrogen bond. The N3-H stretch showed temperature dependence, with a shift to lower frequencies at ≤200 K and to higher frequencies at ≥250 K from the unphotolyzed to the intermediate states. Similar trends were observed in the LOV2 domains from Arabidopsis phot1 and phot2. By contrast, the N3-H stretch of the Q1029L mutant of neo1-LOV2 and neo1-LOV1 was not temperature dependent in the intermediate state. These results seemed correlated with our previous finding that the LOV2 domains show the structural changes in the β-sheet region and/or the adjacent Jα helix of LOV2 domain, but that such structural changes do not take place in the Q1029L mutant or neo1-LOV1 domain. The environment around the N3-H group was also investigated.
Submit a new publication to our database