Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Unraveling the Mechanism of a LOV Domain Optogenetic Sensor: A Glutamine Lever Induces Unfolding of the Jα Helix.

blue LOV domains Background
ACS Chem Biol, 3 Sep 2020 DOI: 10.1021/acschembio.0c00543 Link to full text
Abstract: Light-activated protein domains provide a convenient, modular, and genetically encodable sensor for optogenetics and optobiology. Although these domains have now been deployed in numerous systems, the precise mechanism of photoactivation and the accompanying structural dynamics that modulate output domain activity remain to be fully elucidated. In the C-terminal light, oxygen, voltage (LOV) domain of plant phototropins (LOV2), blue light activation leads to formation of an adduct between a conserved Cys residue and the embedded FMN chromophore, rotation of a conserved Gln (Q513), and unfolding of a helix (Jα-helix) which is coupled to the output partner. In the present work, we focus on the allosteric pathways leading to Jα helix unfolding in Avena sativa LOV2 (AsLOV2) using an interdisciplinary approach involving molecular dynamics simulations extending to 7 μs, time-resolved infrared spectroscopy, solution NMR spectroscopy, and in-cell optogenetic experiments. In the dark state, the side chain of N414 is hydrogen bonded to the backbone N-H of Q513. The simulations predict a lever-like motion of Q513 after Cys adduct formation resulting in loss of the interaction between the side chain of N414 and the backbone C=O of Q513, and formation of a transient hydrogen bond between the Q513 and N414 side chains. The central role of N414 in signal transduction was evaluated by site-directed mutagenesis supporting a direct link between Jα helix unfolding dynamics and the cellular function of the Zdk2-AsLOV2 optogenetic construct. Through this multifaceted approach, we show that Q513 and N414 are critical mediators of protein structural dynamics, linking the ultrafast (sub-ps) excitation of the FMN chromophore to the microsecond conformational changes that result in photoreceptor activation and biological function.
2.

Femtosecond to Millisecond Dynamics of Light Induced Allostery in the Avena sativa LOV Domain.

blue LOV domains Background
J Phys Chem B, 25 Jan 2017 DOI: 10.1021/acs.jpcb.7b00088 Link to full text
Abstract: The rational engineering of photosensor proteins underpins the field of optogenetics, in which light is used for spatiotemporal control of cell signaling. Optogenetic elements function by converting electronic excitation of an embedded chromophore into structural changes on the microseconds to seconds time scale, which then modulate the activity of output domains responsible for biological signaling. Using time-resolved vibrational spectroscopy coupled with isotope labeling, we have mapped the structural evolution of the LOV2 domain of the flavin binding phototropin Avena sativa (AsLOV2) over 10 decades of time, reporting structural dynamics between 100 fs and 1 ms after optical excitation. The transient vibrational spectra contain contributions from both the flavin chromophore and the surrounding protein matrix. These contributions are resolved and assigned through the study of four different isotopically labeled samples. High signal-to-noise data permit the detailed analysis of kinetics associated with the light activated structural evolution. A pathway for the photocycle consistent with the data is proposed. The earliest events occur in the flavin binding pocket, where a subpicosecond perturbation of the protein matrix occurs. In this perturbed environment, the previously characterized reaction between triplet state isoalloxazine and an adjacent cysteine leads to formation of the adduct state; this step is shown to exhibit dispersive kinetics. This reaction promotes coupling of the optical excitation to successive time-dependent structural changes, initially in the β-sheet and then α-helix regions of the AsLOV2 domain, which ultimately gives rise to Jα-helix unfolding, yielding the signaling state. This model is tested through point mutagenesis, elucidating in particular the key mediating role played by Q513.
3.

Proteins in action: femtosecond to millisecond structural dynamics of a photoactive flavoprotein.

blue Fluorescent proteins Background
J Am Chem Soc, 22 Oct 2013 DOI: 10.1021/ja407265p Link to full text
Abstract: Living systems are fundamentally dependent on the ability of proteins to respond to external stimuli. The mechanism, the underlying structural dynamics, and the time scales for regulation of this response are central questions in biochemistry. Here we probe the structural dynamics of the BLUF domain found in several photoactive flavoproteins, which is responsible for light activated functions as diverse as phototaxis and gene regulation. Measurements have been made over 10 decades of time (from 100 fs to 1 ms) using transient vibrational spectroscopy. Chromophore (flavin ring) localized dynamics occur on the pico- to nanosecond time scale, while subsequent protein structural reorganization is observed over microseconds. Multiple time scales are observed for the dynamics associated with different vibrations of the protein, suggesting an underlying hierarchical relaxation pathway. Structural evolution in residues directly H-bonded to the chromophore takes place more slowly than changes in more remote residues. However, a point mutation which suppresses biological function is shown to 'short circuit' this structural relaxation pathway, suppressing the changes which occur further away from the chromophore while accelerating dynamics close to it.
Submit a new publication to our database