Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Integrin-based adhesion compartmentalizes ALK3 of the BMPRII to control cell adhesion and migration.

blue iLID C2C12 EpH4 REF52 SYF Control of cytoskeleton / cell motility / cell shape Transgene expression
J Cell Biol, 7 Oct 2022 DOI: 10.1083/jcb.202107110 Link to full text
Abstract: The spatial organization of cell-surface receptors is fundamental for the coordination of biological responses to physical and biochemical cues of the extracellular matrix. How serine/threonine kinase receptors, ALK3-BMPRII, cooperate with integrins upon BMP2 to drive cell migration is unknown. Whether the dynamics between integrins and BMP receptors intertwine in space and time to guide adhesive processes is yet to be elucidated. We found that BMP2 stimulation controls the spatial organization of BMPRs by segregating ALK3 from BMPRII into β3 integrin-containing focal adhesions. The selective recruitment of ALK3 to focal adhesions requires β3 integrin engagement and ALK3 activation. BMP2 controls the partitioning of immobilized ALK3 within and outside focal adhesions according to single-protein tracking and super-resolution imaging. The spatial control of ALK3 in focal adhesions by optogenetics indicates that ALK3 acts as an adhesive receptor by eliciting cell spreading required for cell migration. ALK3 segregation from BMPRII in integrin-based adhesions is a key aspect of the spatio-temporal control of BMPR signaling.
2.

Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration.

blue CRY2/CIB1 MEF-1 Control of cytoskeleton / cell motility / cell shape
Methods Mol Biol, 20 Nov 2020 DOI: 10.1007/978-1-0716-0962-0_8 Link to full text
Abstract: Cell migration is a complex biophysical process which involves the coordination of molecular assemblies including integrin-dependent adhesions, signaling networks and force-generating cytoskeletal structures incorporating both actin polymerization and myosin activity. During the last decades, proteomic studies have generated impressive protein-protein interaction maps, although the subcellular location, duration, strength, sequence, and nature of these interactions are still concealed. In this chapter we describe how recent developments in superresolution microscopy (SRM) and single-protein tracking (SPT) start to unravel protein interactions and actions in subcellular molecular assemblies driving cell migration.
3.

Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion.

blue CRY2/CIB1 MEF-1 Control of cytoskeleton / cell motility / cell shape
Curr Biol, 8 Aug 2019 DOI: 10.1016/j.cub.2019.07.035 Link to full text
Abstract: The spatiotemporal coordination of actin regulators in the lamellipodium determines the dynamics and architecture of branched F-actin networks during cell migration. The WAVE regulatory complex (WRC), an effector of Rac1 during cell protrusion, is concentrated at the lamellipodium tip. Thus, activated Rac1 should operate at this location to activate WRC and trigger membrane protrusion. Yet correlation of Rho GTPase activation with cycles of membrane protrusion previously revealed complex spatiotemporal patterns of Rac1 and RhoA activation in the lamellipodium. Combining single protein tracking (SPT) and super-resolution imaging with loss- or gain-of-function mutants of Rho GTPases, we show that Rac1 immobilizations at the lamellipodium tip correlate with its activation, in contrast to RhoA. Using Rac1 effector loop mutants and wild-type versus mutant variants of WRC, we show that selective immobilizations of activated Rac1 at the lamellipodium tip depend on effector binding, including WRC. In contrast, wild-type Rac1 only displays slower diffusion at the lamellipodium tip, suggesting transient activations. Local optogenetic activation of Rac1, triggered by membrane recruitment of Tiam1, shows that Rac1 activation must occur close to the lamellipodium tip and not behind the lamellipodium to trigger efficient membrane protrusion. However, coupling tracking with optogenetic activation of Rac1 demonstrates that diffusive properties of wild-type Rac1 are unchanged despite enhanced lamellipodium protrusion. Taken together, our results support a model whereby transient activations of Rac1 occurring close to the lamellipodium tip trigger WRC binding. This short-lived activation ensures a local and rapid control of Rac1 actions on its effectors to trigger actin-based protrusion.
Submit a new publication to our database