OptoLoop: An optogenetic tool to probe the functional role of genome organization.
blue
CRY2/CIB1
CRY2/CRY2
CRY2high
CRY2olig
HeLa
NIH/3T3
U-2 OS
Organelle manipulation
Nucleic acid editing
Benchmarking
Abstract:
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the regulation of gene expression remains only partially understood. The structure-function relationship of genomes has traditionally been probed by population-wide measurements after mutation of critical DNA elements or by perturbation of chromatin-associated proteins. To circumvent possible pleiotropic effects of such approaches, we have developed OptoLoop, an optogenetic system that allows direct manipulation of chromatin contacts by light in a controlled fashion. OptoLoop is based on the fusion between a nuclease-dead SpCas9 protein and the light-inducible oligomerizing protein CRY2. We demonstrate that OptoLoop can drive the induction of contacts between genomically distant, repetitive DNA loci. As a proof-of-principle application of OptoLoop, we probed the functional role of DNA looping in the regulation of the human telomerase gene TERT by long-range contacts with the telomere. By analyzing the extent of chromatin looping and nascent RNA production at individual alleles, we find evidence for looping-mediated repression of TERT. In sum, OptoLoop represents a novel means for the interrogation of structure-function relationships in the genome at single-allele resolution.