Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Requirements for mammalian promoters to decode transcription factor dynamics.

blue AsLOV2 HEK293 HeLa Transgene expression Endogenous gene expression
Nucleic Acids Res, 18 Apr 2023 DOI: 10.1093/nar/gkad273 Link to full text
Abstract: In response to different stimuli many transcription factors (TFs) display different activation dynamics that trigger the expression of specific sets of target genes, suggesting that promoters have a way to decode dynamics. Here, we use optogenetics to directly manipulate the nuclear localization of a synthetic TF in mammalian cells without affecting other processes. We generate pulsatile or sustained TF dynamics and employ live cell microscopy and mathematical modelling to analyse the behaviour of a library of reporter constructs. We find decoding of TF dynamics occurs only when the coupling between TF binding and transcription pre-initiation complex formation is inefficient and that the ability of a promoter to decode TF dynamics gets amplified by inefficient translation initiation. Using the knowledge acquired, we build a synthetic circuit that allows obtaining two gene expression programs depending solely on TF dynamics. Finally, we show that some of the promoter features identified in our study can be used to distinguish natural promoters that have previously been experimentally characterized as responsive to either sustained or pulsatile p53 and NF-κB signals. These results help elucidate how gene expression is regulated in mammalian cells and open up the possibility to build complex synthetic circuits steered by TF dynamics.
2.

Analysis of Slow-Cycling Variants of the Light-Inducible Nuclear Protein Export System LEXY in Mammalian Cells.

blue AsLOV2 HEK293 Transgene expression
ACS Synth Biol, 30 Sep 2022 DOI: 10.1021/acssynbio.2c00232 Link to full text
Abstract: The optogenetic tool LEXY consists of the second light oxygen voltage (LOV) domain of Avena sativa phototropin 1 mutated to contain a nuclear export signal. It allows exporting from the nucleus with blue light proteins of interest (POIs) genetically fused to it. Mutations slowing the dark recovery rate of the LOV domain within LEXY were recently shown to allow for better depletion of some POIs from the nucleus in Drosophila embryos and for the usage of low light illumination regimes. We investigated these variants in mammalian cells and found they increase the cytoplasmic localization of the proteins we tested after illumination, but also during the dark phases, which corresponds to higher leakiness of the system. These data suggest that, when aiming to sequester into the nucleus a protein with a cytoplasmic function, the original LEXY is preferable. The iLEXY variants are, instead, advantageous when wanting to deplete the nucleus of the POI as much as possible.
3.

Optogenetic Repressors of Gene Expression in Yeasts Using Light-Controlled Nuclear Localization.

blue AsLOV2 S. cerevisiae
CMBE, 24 Sep 2019 DOI: 10.1007/s12195-019-00598-9 Link to full text
Abstract: Introduction: Controlling gene expression is a fundamental goal of basic and synthetic biology because it allows insight into cellular function and control of cellular activity. We explored the possibility of generating an optogenetic repressor of gene expression in the model organism Saccharomyces cerevisiae by using light to control the nuclear localization of nuclease-dead Cas9, dCas9. Methods: The dCas9 protein acts as a repressor for a gene of interest when localized to the nucleus in the presence of an appropriate guide RNA (sgRNA). We engineered dCas9, the mammalian transcriptional repressor Mxi1, and an optogenetic tool to control nuclear localization (LINuS) as parts in an existing yeast optogenetic toolkit. This allowed expression cassettes containing novel dCas9 repressor configurations and guide RNAs to be rapidly constructed and integrated into yeast. Results: Our library of repressors displays a range of basal repression without the need for inducers or promoter modification. Populations of cells containing these repressors can be combined to generate a heterogeneous population of yeast with a 100-fold expression range. We find that repression can be dialed modestly in a light dose- and intensity-dependent manner. We used this library to repress expression of the lanosterol 14-alpha-demethylase Erg11, generating yeast with a range of sensitivity to the important antifungal drug fluconazole. Conclusions: This toolkit will be useful for spatiotemporal perturbation of gene expression in Saccharomyces cerevisiae. Additionally, we believe that the simplicity of our scheme will allow these repressors to be easily modified to control gene expression in medically relevant fungi, such as pathogenic yeasts.
Submit a new publication to our database