Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Natural photoreceptors and their application to synthetic biology.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 12 Nov 2014 DOI: 10.1016/j.tibtech.2014.10.007 Link to full text
Abstract: The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level.
2.

A fully genetically encoded protein architecture for optical control of peptide ligand concentration.

blue AsLOV2 PC-12
Nat Commun, 10 Jan 2014 DOI: 10.1038/ncomms4019 Link to full text
Abstract: Ion channels are among the most important proteins in biology, regulating the activity of excitable cells and changing in diseases. Ideally it would be possible to actuate endogenous ion channels, in a temporally precise and reversible manner, and without requiring chemical cofactors. Here we present a modular protein architecture for fully genetically encoded, light-modulated control of ligands that modulate ion channels of a targeted cell. Our reagent, which we call a lumitoxin, combines a photoswitch and an ion channel-blocking peptide toxin. Illumination causes the photoswitch to unfold, lowering the toxin's local concentration near the cell surface, and enabling the ion channel to function. We explore lumitoxin modularity by showing operation with peptide toxins that target different voltage-dependent K(+) channels. The lumitoxin architecture may represent a new kind of modular protein-engineering strategy for designing light-activated proteins, and thus may enable development of novel tools for modulating cellular physiology.
Submit a new publication to our database