Showing 1 - 3 of 3 results
1.
A rich get richer effect governs intracellular condensate size distributions.
Abstract:
Phase separation of biomolecules into condensates has emerged as a ubiquitous mechanism for intracellular organization and impacts many intracellular processes, including reaction pathways through clustering of enzymes and their intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here, we utilize a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. We find that both native nuclear speckles and FUS condensates formed with the synthetic Corelet system obey an exponential size distribution, which can be recapitulated in Monte Carlo simulations of fast nucleation followed by coalescence. By contrast, pathological aggregation of cytoplasmic Huntingtin polyQ protein exhibits a power-law size distribution, with an exponent of −1.41 ± 0.02. These distinct behaviors reflect the relative importance of nucleation and coalescence kinetics: introducing continuous condensate nucleation into the Monte Carlo coarsening simulations gives rise to polyQ-like power-law behavior. We demonstrate that the emergence of power-law distributions under continuous nucleation reflects a “rich get richer” effect, whose extent may play a general role in the determination of condensate size distributions.
2.
Compartmentalization of telomeres through DNA-scaffolded phase separation.
-
Jack, A
-
Kim, Y
-
Strom, AR
-
Lee, DSW
-
Williams, B
-
Schaub, JM
-
Kellogg, EH
-
Finkelstein, IJ
-
Ferro, LS
-
Yildiz, A
-
Brangwynne, CP
Abstract:
Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.
3.
Mechanical Frustration of Phase Separation in the Cell Nucleus by Chromatin.
Abstract:
Liquid-liquid phase separation is a fundamental mechanism underlying subcellular organization. Motivated by the striking observation that optogenetically generated droplets in the nucleus display suppressed coarsening dynamics, we study the impact of chromatin mechanics on droplet phase separation. We combine theory and simulation to show that cross-linked chromatin can mechanically suppress droplets' coalescence and ripening, as well as quantitatively control their number, size, and placement. Our results highlight the role of the subcellular mechanical environment on condensate regulation.