Showing 1 - 4 of 4 results
1.
A micro-nano optogenetic system based on probiotics for in situ host metabolism regulation.
-
Zhang, XZ
-
Ma, NM
-
Ling, WL
-
Pang, GP
-
Sun, TS
-
Liu, JL
-
Pan, HP
-
Cui, MC
-
Han, CH
-
Yang, CY
-
Chang, JC
-
Huang, XH
Abstract:
Genetically engineered bacteria have aroused attention as micro-nano drug delivery systems in situ. However, conventional designs of engineered bacteria usually function constantly or autonomously, which might be non-specific or imprecise. Therefore, designing and optimizing in situ control strategy are important methodological progress for therapeutic researches of intestinal engineered bacteria. Here, a micro-nano optogenetic system based on probiotic was developed combining microelectronics, nanotechnology, and synthetic biology to achieve in situ controllable drug delivery. Firstly, optogenetic engineered Lactococcus lactis was orally administrated in the intestinal tract. A wearable optical device was designed to control optical signals remotely. Then, L. lactis could be customized to secrete peptides according to optical signals. As an example, optogenetic L. lactis system can be constructed to secrete glucagon-like peptide-1 (GLP-1) under the control of the wearable optical device to regulate metabolism. To improve the half-life of GLP-1 in vivo, Fc-domain fused GLP-1 was optimally used. Using this strategy, blood glucose, weight, and other features were well controlled in rats and mice models. Furthermore, upconversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential to expand the toolbox for intestinal engineered bacteria.
2.
Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs.
-
Han, C
-
Zhang, X
-
Pang, G
-
Zhang, Y
-
Pan, H
-
Li, L
-
Cui, M
-
Liu, B
-
Kang, R
-
Xue, X
-
Sun, T
-
Liu, J
-
Chang, J
-
Zhao, P
-
Wang, H
Abstract:
Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.
3.
Optogenetic operated probiotics to regulate host metabolism by mimicking enteroendocrine.
-
Zhang, X
-
Ma, N
-
Ling, W
-
Pang, G
-
Sun, T
-
Liu, J
-
Pan, H
-
Cui, M
-
Han, C
-
Yang, C
-
Chang, J
-
Huang, X
-
Wang, H
Abstract:
The enteroendocrine system plays an important role in metabolism. The gut microbiome regulates enteroendocrine in an extensive way, arousing attention in biomedicine. However, conventional strategies of enteroendocrine regulation via gut microbiome are usually non-specific or imprecise. Here, an optogenetic operated probiotics system was developed combining synthetic biology and flexible electronics to achieve in situ controllable secretion to mimic enteroendocrine. Firstly, optogenetic engineered Lactococcus lactis (L. lactis) were administrated in the intestinal tract. A wearable optogenetic device was designed to control optical signals remotely. Then, L. lactis could secrete enteroendocrine hormone according to optical signals. As an example, optogenetic L. lactis could secrete glucagon-like peptide-1(GLP-1) under the control of the wearable optogenetic device. To improve the half-life of GLP-1 in vivo, the Fc domain from immunoglobulin was fused. Treated with this strategy, blood glucose, weight and other features were relatively well controlled in rats and mice models. Furthermore, up-conversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential in metabolic diseases therapy by mimicking enteroendocrine.
4.
Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy.
-
Pan, H
-
Li, L
-
Pang, G
-
Han, C
-
Liu, B
-
Zhang, Y
-
Shen, Y
-
Sun, T
-
Liu, J
-
Chang, J
-
Wang, H
Abstract:
Engineered anaerobic bacteria known as live biotherapeutic products (LBPs) have shown great advances in cancer therapy. One advantage of anaerobic bacteria as drug carrier is that it spontaneously target to tumor and persistently release anti-tumor factors. To realize effective anti-cancer therapeutics, one essential premise is to improve the controllability of treatment. Here, we designed near-infrared (NIR)-light responsive bacteria as anti-tumor agent, which is based on a blue-light responsive module and upconversion nanoparticles. The upconversion nanoparticles converted external NIR light to local blue light to noninvasively activate blue-light responsive module (EL222) in engineered LBPs. The activated LBPs then produce tumor necrosis factor α (TNFα) for precise tumor ablation. In vitro and in vivo results have proven that this engineered NIR-light-responsive bacteria could efficiently inhibit tumor growth. We anticipate that this controllable and safe bacteria-based therapy can facilitate the application of LBPs to accurately and effectively regulate diseases.