1.
Precise Control of Intracellular Trafficking and Receptor-Mediated Endocytosis in Living Cells and Behaving Animals.
-
Chen, SC
-
Zeng, NJ
-
Liu, GY
-
Wang, HC
-
Lin, TY
-
Tai, YL
-
Chen, CY
-
Fang, Y
-
Chuang, YC
-
Kao, CL
-
Cheng, H
-
Wu, BH
-
Sun, PC
-
Bayansan, O
-
Chiu, YT
-
Shih, CH
-
Chung, WH
-
Yang, JB
-
Wang, LH
-
Chiang, PH
-
Chen, CH
-
Wagner, OI
-
Wang, YC
-
Lin, YC
Abstract:
Intracellular trafficking, an extremely complex network, dynamically orchestrates nearly all cellular activities. A versatile method that enables the manipulation of target transport pathways with high spatiotemporal accuracy in vitro and in vivo is required to study how this network coordinates its functions. Here, a new method called RIVET (Rapid Immobilization of target Vesicles on Engaged Tracks) is presented. Utilizing inducible dimerization between target vesicles and selective cytoskeletons, RIVET can spatiotemporally halt numerous intracellular trafficking pathways within seconds in a reversible manner. Its highly specific perturbations allow for the real-time dissection of the dynamic relationships among different trafficking pathways. Moreover, RIVET is capable of inhibiting receptor-mediated endocytosis. This versatile system can be applied from the cellular level to whole organisms. RIVET opens up new avenues for studying intracellular trafficking under various physiological and pathological conditions and offers potential strategies for treating trafficking-related disorders.
2.
A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics.
-
Sapoznik, E
-
Chang, BJ
-
Huh, J
-
Ju, RJ
-
Azarova, EV
-
Pohlkamp, T
-
Welf, ES
-
Broadbent, D
-
Carisey, AF
-
Stehbens, SJ
-
Lee, KM
-
Marín, A
-
Hanker, AB
-
Schmidt, JC
-
Arteaga, CL
-
Yang, B
-
Kobayashi, Y
-
Tata, PR
-
Kruithoff, R
-
Doubrovinski, K
-
Shepherd, DP
-
Millett-Sikking, A
-
York, AG
-
Dean, KM
-
Fiolka, RP
Abstract:
We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.