Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Anusha N Khanchandani"
Showing 1 - 2 of 2 results
1.

Rapid Optimization of a Light-Inducible System to Control Mammalian Gene Expression.

blue CRY2/CIB1 HEK293T
J Vis Exp, 4 Nov 2025 DOI: 10.3791/68779 Link to full text
Abstract: Inducible gene expression tools can open novel applications in human health and biotechnology, but current options are often expensive, difficult to reverse, and have undesirable off-target effects. Optogenetic systems use light-responsive proteins to control the activity of regulators such that expression is controlled with the "flip of a switch". This study optimizes a simplified light activated CRISPR effector (2pLACE) system, which provides tunable, reversible, and precise control of mammalian gene expression. The OptoPlate-96 enables high-throughput screening via flow cytometry for single-cell analysis and rapid optimization of 2pLACE. This study demonstrates how to use the 2pLACE system with the OptoPlate-96 in HEK293T cells to identify the optimal component ratios for maximizing dynamic range and to find the blue light intensity response curve. Similar workflows can be developed for other mammalian cells and for other optogenetic systems and wavelengths of light. These advancements enhance the precision, scalability, and adaptability of optogenetic tools for biomanufacturing applications.
2.

A simplified two-plasmid system for orthogonal control of mammalian gene expression using light-activated CRISPR effector.

blue CRY2/CIB1 C2C12 HEK293T Transgene expression
BMC Biotechnol, 1 Jul 2025 DOI: 10.1186/s12896-025-00994-2 Link to full text
Abstract: Optogenetic systems use light-responsive proteins to control gene expression, ion channels, protein localization, and signaling with the "flip of a switch". One such tool is the light activated CRISPR effector (LACE) system. Its ability to regulate gene expression in a tunable, reversible, and spatially resolved manner makes it attractive for many applications. However, LACE relies on delivery of four separate components on individual plasmids, which can limit its use. Here, we optimize LACE to reduce the number of plasmids needed to deliver all four components.
Submit a new publication to our database