Showing 1 - 4 of 4 results
1.
Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription.
Abstract:
Morphogen gradients convey essential spatial information during tissue patterning. While both concentration and timing of morphogen exposure are crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homologue of NF-κB, which orchestrates dorso-ventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning, and characterized the resulting effect on spatio-temporal transcription of target genes in terms of timing, coordination, and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL is detectable at the level of single cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally-resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.
2.
Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster.
Abstract:
Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo.
3.
High levels of Dorsal transcription factor downregulate, not promote, snail expression by regulating enhancer action.
Abstract:
In Drosophila embryos, genes expressed along the dorsal-ventral axis are responsive to concentration of the Dorsal (Dl) transcription factor, which varies in space; however, levels of this morphogen also build over time. Since expression of high-threshold Dl target genes such as snail (sna) is supported before Dl levels peak, it is unclear what role increasing levels have if any. Here we investigated action of two enhancers that control sna expression in embryos, demonstrating using genome editing that Dl binding sites within one enhancer located promoter proximally, sna.prox, can limit the ability of the other distally-located enhancer, sna.dis, to increase sna levels. In addition, MS2-MCP live imaging was used to study sna transcription rate in wildtype, dl heterozygote, and a background in which a photo-sensitive degron is fused to Dl (dl-BLID). The results demonstrate that, when Dl levels are high, Dl acts through sna.prox to limit the activity of sna.dis and thereby influence sna transcription rate. In contrast, when Dl levels are kept low using dl-BLID, sna.prox positively influences sna transcription rate. Collectively, our data support the view that Dl’s effect on gene expression changes over time, switching from promoting sna expression at low concentration to dampening sna expression at high concentration by regulating enhancer interactions. We propose this differential action of the Dl morphogen is likely supported by occupancy of this factor first to high and then low affinity binding sites over time as Dl levels rise to coordinate action of these two co-acting enhancers.
4.
Twist-dependent ratchet functioning downstream from Dorsal revealed using a light-inducible degron.
Abstract:
Graded transcription factors are pivotal regulators of embryonic patterning, but whether their role changes over time is unclear. A light-regulated protein degradation system was used to assay temporal dependence of the transcription factor Dorsal in dorsal-ventral axis patterning of Drosophila embryos. Surprisingly, the high-threshold target gene snail only requires Dorsal input early but not late when Dorsal levels peak. Instead, late snail expression can be supported by action of the Twist transcription factor, specifically, through one enhancer, sna.distal This study demonstrates that continuous input is not required for some Dorsal targets and downstream responses, such as twist, function as molecular ratchets.