Dimerization of iLID Optogenetic Proteins Observed Using 3D Single-Molecule Tracking in Live Bacterial Cells.
Abstract:
3D single molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and the cellular environment. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating some cellular processes, transient perturbation to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. Optogenetic dimerization systems can be used to manipulate protein spatial distributions which could offer a means to deplete specific diffusive states observed in single molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single molecule tracking. We observed a robust optogenetic response in protein spatial distribution after 488 nm laser activation. Surprisingly, 3D single molecule tracking results indicate activation of the optogenetic response at high intensity wavelengths for which there is evidence of minimal photon absorbance by the LOV2 domain. However, the preactivation response was minimized through the use of iLID system mutants, and titration of protein expression levels.