Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 116 results
1.

CELF2 promotes tau exon 10 inclusion via hinge domain-mediated nuclear condensation.

blue CRY2/CRY2 HEK293T Endogenous gene expression Organelle manipulation
bioRxiv, 3 Nov 2024 DOI: 10.1101/2024.11.02.621395 Link to full text
Abstract: Alternative splicing is a fundamental process that contributes to the functional diversity and complexity of proteins. The regulation of each alternative splicing event involves the coordinated action of multiple RNA-binding proteins, creating a diverse array of alternatively spliced products. Dysregulation of alternative splicing is associated with various diseases, including neurodegeneration. Here we demonstrate that CELF2, a splicing regulator and a GWAS-identified risk factor for Alzheimer’s disease, binds to mRNAs associated with neurodegenerative diseases, with a specific interaction observed in the intron adjacent to exon 10 on Tau mRNA. Loss of CELF2 in the mouse brain results in a decreased inclusion of Tau exon 10, leading to a reduced 4R:3R ratio. Further exploration shows that the hinge domain of CELF2 possesses an intrinsically disordered region (IDR), which mediates CELF2 condensation and function. The functionality of IDR in regulating CELF2 function is underscored by its substitutability with IDRs from FUS and TAF15. Using TurboID we identified proteins that interact with CELF2 through its IDR. We revealed that CELF2 co-condensate with NOVA2 and SFPQ, which coordinate with CELF2 to regulate the alternative splicing of Tau exon 10. A negatively charged residue within the IDR (D388), which is conserved among CELF proteins, is critical for CELF2 condensate formation, interactions with NOVA2 and SFPQ, and function in regulating tau exon 10 splicing. Our data allow us to propose that CELF2 regulates Tau alternative splicing by forming condensates through its IDR with other splicing factors, and that the composition of the proteins within the condensates determines the outcomes of alternative splicing events.
2.

The combination of optogenetic-induced protein aggregation and proximity biotinylation assays strongly implicates endolysosomal proteins in the early stages of α-synuclein aggregation.

blue CRY2olig HEK293T Organelle manipulation Neuronal activity control
bioRxiv, 18 Oct 2024 DOI: 10.1101/2024.10.16.618762 Link to full text
Abstract: Alpha-synuclein (α-syn) aggregation is a defining feature of Parkinson's disease (PD) and related synucleinopathies. Despite significant research efforts focused on understanding α-syn aggregation mechanisms, the early stages of this process remain elusive, largely due to limitations in experimental tools that lack the temporal resolution to capture these dynamic events. Here, we introduce UltraID-LIPA, an innovative platform that combines the Light-Inducible Protein Aggregation (LIPA) system with the UltraID proximity-dependent biotinylation assay to identify α-syn-interacting proteins and uncover key mechanisms driving its oligomerization. UltraID-LIPA successfully identified 38 α-syn-interacting proteins, including both established and novel candidates, highlighting the accuracy and robustness of the approach. Notably, a strong interaction with endolysosomal and membrane-associated proteins was observed, supporting the hypothesis that interactions with membrane-bound organelles are pivotal in the early stages of α-syn aggregation. This powerful platform provides new insights into dynamic protein aggregation events, enhancing our understanding of synucleinopathies and other proteinopathies.
3.

Light-induced targeting enables proteomics on endogenous condensates.

blue iLID mESCs Organelle manipulation
Cell, 15 Oct 2024 DOI: 10.1016/j.cell.2024.09.040 Link to full text
Abstract: Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
4.

RNA G-quadruplexes form scaffolds that promote neuropathological α-synuclein aggregation.

blue CRY2olig mouse in vivo mouse neural cells Neuro-2a Organelle manipulation Neuronal activity control
Cell, 14 Oct 2024 DOI: 10.1016/j.cell.2024.09.037 Link to full text
Abstract: Synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are triggered by α-synuclein aggregation, triggering progressive neurodegeneration. However, the intracellular α-synuclein aggregation mechanism remains unclear. Herein, we demonstrate that RNA G-quadruplex assembly forms scaffolds for α-synuclein aggregation, contributing to neurodegeneration. Purified α-synuclein binds RNA G-quadruplexes directly through the N terminus. RNA G-quadruplexes undergo Ca2+-induced phase separation and assembly, accelerating α-synuclein sol-gel phase transition. In α-synuclein preformed fibril-treated neurons, RNA G-quadruplex assembly comprising synaptic mRNAs co-aggregates with α-synuclein upon excess cytoplasmic Ca2+ influx, eliciting synaptic dysfunction. Forced RNA G-quadruplex assembly using an optogenetic approach evokes α-synuclein aggregation, causing neuronal dysfunction and neurodegeneration. The administration of 5-aminolevulinic acid, a protoporphyrin IX prodrug, prevents RNA G-quadruplex phase separation, thereby attenuating α-synuclein aggregation, neurodegeneration, and progressive motor deficits in α-synuclein preformed fibril-injected synucleinopathic mice. Therefore, Ca2+ influx-induced RNA G-quadruplex assembly accelerates α-synuclein phase transition and aggregation, potentially contributing to synucleinopathies.
5.

Cryo-ET of actin cytoskeleton and membrane structure in lamellipodia formation using optogenetics.

blue AsLOV2 Cos-7 Control of cytoskeleton / cell motility / cell shape Organelle manipulation
bioRxiv, 14 Oct 2024 DOI: 10.1101/2024.08.13.607852 Link to full text
Abstract: Lamellipodia are sheet-like protrusions essential for migration and endocytosis, yet the ultrastructure of the actin cytoskeleton during lamellipodia formation remains underexplored. Here, we combined the optogenetic tool PA-Rac1 with cryo-ET to enable ultrastructural analysis of newly formed lamellipodia. We successfully visualized lamellipodia at various extension stages, representing phases of their formation. In minor extensions, several unbundled actin filaments formed “Minor protrusions” at the leading edge. For moderately extended lamellipodia, cross-linked actin filaments formed small filopodia-like structures, termed “mini filopodia.” In fully extended lamellipodia, filopodia matured at multiple points, and cross-linked actin filaments running nearly parallel to the leading edge increased throughout the lamellipodia. These observations suggest that actin polymerization begins in specific plasma membrane regions, forming mini filopodia that either mature into full filopodia or detach from the leading edge to form parallel filaments. This actin turnover likely drives lamellipodial protrusion, providing new insights into actin dynamics and cell migration.
6.

Optogenetic Control of the Mitochondrial Protein Import in Mammalian Cells.

blue AsLOV2 CRY2/CIB1 HEK293T Signaling cascade control Organelle manipulation
Cells, 9 Oct 2024 DOI: 10.3390/cells13191671 Link to full text
Abstract: Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import of proteins into the mitochondrial matrix via the presequence pathway on demand. OptoMitoImport is based on a two-step process: first, light-induced cleavage by a TEV protease cuts off a plasma membrane-anchored fusion construct in close proximity to a mitochondrial targeting sequence; second, the mitochondrial targeting sequence preceding the protein of interest recruits to the outer mitochondrial membrane and imports the protein fused to it into mitochondria. Upon reaching the mitochondrial matrix, the matrix processing peptidase cuts off the mitochondrial targeting sequence and releases the protein of interest. OptoMitoImport is available as a two-plasmid system as well as a P2A peptide or IRES sequence-based bicistronic system. Fluorescence studies demonstrate the release of the plasma membrane-anchored protein of interest through light-induced TEV protease cleavage and its localization to mitochondria. Cell fractionation experiments confirm the presence of the peptidase-cleaved protein of interest in the mitochondrial fraction. The processed product is protected from proteinase K treatment. Depletion of the membrane potential across the inner mitochondria membrane prevents the mitochondrial protein import, indicating an import of the protein of interest by the presequence pathway. These data demonstrate the functionality of OptoMitoImport as a generic system with which to control the post-translational mitochondrial import of proteins via the presequence pathway.
7.

The G3BP Stress-Granule Proteins Reinforce the Translation Program of the Integrated Stress Response.

blue CRY2/CRY2 HCT116 Endogenous gene expression Organelle manipulation
bioRxiv, 5 Oct 2024 DOI: 10.1101/2024.10.04.616305 Link to full text
Abstract: When mammalian cells are exposed to extracellular stress, they coordinate the condensation of stress granules (SGs) through the action of key nucleating proteins G3BP1 and G3BP2 (G3BPs) and, simultaneously, undergo a massive reduction in translation.1-5 Although SGs and G3BPs have been linked to this translation response, their overall impact has been unclear. Here, we investigate the longstanding question of how, and indeed whether, G3BPs and SGs shape the stress translation response. We find that SGs are enriched for mRNAs that are resistant to the stress-induced translation shutdown. Although the accurate recruitment of these stress-resistant mRNAs does require the context of stress, a combination of optogenetic tools and spike-normalized ribosome profiling demonstrates that G3BPs and SGs are necessary and sufficient to both help prioritize the translation of their enriched mRNAs and help suppress cytosolic translation. Together these results support a model in which G3BPs and SGs reinforce the stress translation program by prioritizing the translation of their resident mRNAs.
8.

Precision in situ cryo-correlative light and electron microscopy of optogenetically-positioned organelles.

blue CRY2/CIB1 PtK2 (NBL-5) Control of vesicular transport Organelle manipulation
J Cell Sci, 23 Sep 2024 DOI: 10.1242/jcs.262163 Link to full text
Abstract: Unambiguous targeting of cellular structures for in situ cryo-electron microscopy in the heterogeneous, dense, and compacted environment of the cytoplasm remains challenging. Here we have developed a cryogenic correlative light and electron microscopy (cryo-CLEM) workflow which combines thin cells grown on a mechanically defined substratum to rapidly analyse organelles and macromolecular complexes by cryo-electron tomography (cryo-ET). We coupled these advancements with optogenetics to redistribute perinuclear-localised organelles to the cell periphery, allowing visualisation of organelles otherwise positioned in cellular regions too thick for cryo-ET. This reliable and robust workflow allows for fast in situ analyses without the requirement for cryo-focused ion beam milling. Using this protocol, cells can be frozen, imaged by cryo-fluorescence microscopy and be ready for batch cryo-ET within a day.
9.

Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.

blue AsLOV2 CRY2/CIB1 CUTLL1 HEK293 Endogenous gene expression Organelle manipulation
Sci Rep, 19 Sep 2024 DOI: 10.1038/s41598-024-71634-6 Link to full text
Abstract: The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
10.

C9orf72 poly-PR forms anisotropic condensates causative of nuclear TDP-43 pathology.

blue CRY2/CRY2 CRY2olig HeLa hESCs Organelle manipulation
iScience, 14 Sep 2024 DOI: 10.1016/j.isci.2024.110937 Link to full text
Abstract: Proteinaceous inclusions formed by C9orf72-derived dipeptide-repeat (DPR) proteins are a histopathological hallmark in ∼50% of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) cases. However, DPR aggregation/inclusion formation could not be efficiently recapitulated in cell models for four out of five DPRs. In this study, using optogenetics, we achieved chemical-free poly-PR condensation/aggregation in cultured cells including human motor neurons, with spatial and temporal control. Strikingly, nuclear poly-PR condensates had anisotropic, hollow-center appearance, resembling TDP-43 anisosomes, and their growth was limited by RNA. These condensates induced abnormal TDP-43 granulation in the nucleus without stress response activation. Cytoplasmic poly-PR aggregates forming under prolonged opto-stimulation were more persistent than its nuclear condensates, selectively sequestered TDP-43 in a demixed state and surrounded spontaneous stress granules. Thus, poly-PR condensation accompanied by nuclear TDP-43 dysfunction may constitute an early pathological event in C9-ALS/FTD. Anisosome-type condensates of disease-linked proteins may represent a common molecular species in neurodegenerative disease.
11.

Optogenetic tools for inducing organelle membrane rupture.

blue AsLOV2 HeLa Organelle manipulation
bioRxiv, 13 Aug 2024 DOI: 10.1101/2024.08.13.607738 Link to full text
Abstract: Disintegration of organelle membranes induces various cellular responses and has pathological consequences, including autoinflammatory diseases and neurodegeneration. Establishing methods to induce membrane rupture of organelles of interest is essential to analyze the downstream effects of membrane rupture; however, the spatiotemporal induction of rupture of specific membranes remains challenging. Here, we develop a series of optogenetic tools to induce organelle membrane rupture by using engineered Bcl-2-associated X protein (BAX), whose primary function is to form membrane pores in the outer mitochondrial membrane (OMM) during apoptosis. When BAX is forced to target mitochondria, lysosomes, or the endoplasmic reticulum (ER) by replacing its C-terminal transmembrane domain (TMD) with organelle-targeting sequences, the BAX mutants rupture their target membranes. To regulate the activity of organelle-targeted BAX, the photosensitive light-oxygen-voltage-sensing 2 (LOV2) domain is fused to the N-terminus of BAX. The resulting LOV2–BAX fusion protein exhibits blue light–dependent membrane-rupture activity on various organelles, including mitochondria, the ER, and lysosomes. Thus, LOV2–BAX enables spatiotemporal induction of membrane rupture across a broad range of organelles, expanding research opportunities on the consequences of organelle membrane disruption.
12.

Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.

blue iLID HEK293T NIH/3T3 Organelle manipulation
Nat Commun, 7 Aug 2024 DOI: 10.1038/s41467-024-50858-0 Link to full text
Abstract: Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
13.

Stress pathway outputs are encoded by pH-dependent clustering of kinase components.

blue CRY2clust HEK293 Organelle manipulation
Nat Commun, 5 Aug 2024 DOI: 10.1038/s41467-024-50638-w Link to full text
Abstract: Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.
14.

Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.

blue AsLOV2 CRY2/CIB1 HEK293 HeLa Signaling cascade control Organelle manipulation
bioRxiv, 1 Aug 2024 DOI: 10.1101/2023.03.17.533124 Link to full text
Abstract: The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
15.

Optogenetic Strategies for Optimizing the Performance of Phospholipids Biosensors.

blue cpLOV2 CRY2/CIB1 HEK293T HeLa Organelle manipulation
Adv Sci (Weinh), 29 Jul 2024 DOI: 10.1002/advs.202403026 Link to full text
Abstract: High-performance biosensors play a crucial role in elucidating the intricate spatiotemporal regulatory roles and dynamics of membrane phospholipids. However, enhancing the sensitivity and imaging performance remains a significant challenge. Here, optogenetic-based strategies are presented to optimize phospholipid biosensors. These strategies involves presequestering unbound biosensors in the cell nucleus and regulating their cytosolic levels with blue light to minimize background signal interference in phospholipid detection, particularly under conditions of high expression levels of biosensor. Furthermore, optically controlled phase separation and the SunTag system are employed to generate punctate probes for substrate detection, thereby amplifying biosensor signals and enhancing visualization of the detection process. These improved phospholipid biosensors hold great potential for enhancing the understanding of the spatiotemporal dynamics and regulatory roles of membrane lipids in live cells and the methodological insights in this study might be valuable for developing other high-performance biosensors.
16.

Intracellular tau fragment droplets serve as seeds for tau fibrils.

blue CRY2olig Neuro-2a Organelle manipulation
Structure, 19 Jul 2024 DOI: 10.1016/j.str.2024.06.018 Link to full text
Abstract: Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer's disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. These intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.
17.

TPM4 condensates glycolytic enzymes to fuel actin reorganization under hyperosmotic stress.

blue CRY2/CRY2 HEK293T HeLa MDA-MB-231 Organelle manipulation
bioRxiv, 14 Jul 2024 DOI: 10.1101/2024.07.09.602822 Link to full text
Abstract: Actin homeostasis is fundamental for cell structure and consumes a large portion of cellular ATP. It has been documented in the literature that certain glycolytic enzymes can interact with actin, indicating an intricate interplay between the cytoskeleton and cellular metabolism. Here we report that hyperosmotic stress triggers actin severing and subsequent phase separation of the actin-binding protein TPM4. TPM4 condensates glycolytic enzymes such as HK2, PFKM, and PKM2, and adhere to and wrap around actin filaments. Notably, the condensates of TPM4 and glycolytic enzymes are enriched of NADH and ATP, suggestive of their functional importance in cell metabolism. At cellular level, actin filaments assembly is enhanced upon hyperosmotic stress and TPM4 condensation, while depletion of TPM4 impaired osmolarity-induced actin reorganization. At tissue level, co-localized condensates of TPM4 and glycolytic enzymes are observed in renal tissues subjected to hyperosmotic stress. Together, our findings suggest that stress-induced actin perturbation may act on TPM4 to organize glycolytic hubs that tether energy production to cytoskeletal reorganization.
18.

Activation of NF-κB signaling by optogenetic clustering of IKKα and β.

blue CRY2/CRY2 CRY2olig HEK293T Signaling cascade control Organelle manipulation
bioRxiv, 12 Jun 2024 DOI: 10.1101/2024.06.12.598631 Link to full text
Abstract: A large percentage of proteins form higher-order structures in order to fulfill their function. These structures are crucial for the precise spatial and temporal regulation of the cellular signaling network. Investigation of this network requires sophisticated research tools, such as optogenetic tools, that allow dynamic control over the signaling molecules. Cryptochrome 2 and its variations are the best-characterized oligomerizing photoreceptors the optogenetics toolbox has to offer. Therefore, we utilized this switch and combined it with an eGFP-binding nanobody, to build a toolbox of optogenetic constructs that enables the oligomerization of any eGFP-tagged protein of interest. We further introduced the higher clustering variant Cry2olig and an intrinsically disordered region to create higher-order oligomers or phase-separated assemblies to investigate the impact of different oligomerization states on eGFP-tagged signaling molecules. We apply these constructs to cluster IKKα and IKKβ, which resemble the central signaling integrator of the NF-κB pathway, thereby engineer a potent, blue-light-inducible activator of NF-κB signaling.
19.

Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors.

blue CRY2/CRY2 iLID hTERT RPE-1 MCF10A Signaling cascade control Control of cytoskeleton / cell motility / cell shape Organelle manipulation
bioRxiv, 31 May 2024 DOI: 10.1101/2024.05.30.596676 Link to full text
Abstract: Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
20.

Ubiquitin-driven protein condensation initiates clathrin-mediated endocytosis.

blue CRY2/CRY2 SUM-159 Control of vesicular transport Organelle manipulation
bioRxiv, 19 May 2024 DOI: 10.1101/2023.08.21.554139 Link to full text
Abstract: Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live cell settings, dynamic exchange of Eps15 proteins, a hallmark of liquid like systems, was modulated by Eps15-Ub interactions. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic recycling.
21.

Induction of the aggresome and insoluble tau aggregation using an optogenetic tool.

blue CRY2olig Neuro-2a Transgene expression Organelle manipulation
bioRxiv, 8 May 2024 DOI: 10.1101/2024.05.07.592868 Link to full text
Abstract: Tauopathy is a group of diseases where fibrillary tau aggregates are formed in neurons and glial cells in the brain. In Alzheimer's disease (AD), the most common form of tauopathy, tau aggregation begins in the brainstem and entorhinal cortex and then spreads throughout the brain. Understanding the mechanism by which locally formed tau pathology propagates throughout the brain is crucial for comprehending the pathogenesis of AD. Therefore, a novel model of tau pathology that artificially induces tau aggregation in targeted cells at specific times is essential. In this study, we report a novel optogenetic module, OptoTau, human tau with the P301L mutation fused with a photosensitive protein Cry2Olig, which could induce various forms of tau depending on the pattern of blue light illumination. Continuous blue light illumination for 12 h to Neuro2a cells stably expressing OptoTau (OptoTauKI cells) resulted in cluster formation along microtubules, many of which eventually accumulated in aggresomes. On the other hand, when alternating light exposure and darkness in 30-minute cycles for 8 sets per day were repeated over 8 days, methanol-insoluble tau aggregation was formed. Methanol-insoluble tau was induced more rapidly by repeating cycles of 5-minute illumination followed by 25 minutes of darkness over 24 hours. These findings suggest that OptoTau can induce various stages of tau aggregation depending on the pattern of blue light exposure. Thus, this technique holds promise as a novel approach to creating specific tau aggregation in targeted cells at desired time points.
22.

Chromatin condensates tune nuclear mechano-sensing in Kabuki Syndrome by constraining cGAS activation.

blue CRY2/CRY2 hMSCs NIH/3T3 Organelle manipulation
bioRxiv, 6 May 2024 DOI: 10.1101/2024.05.06.592652 Link to full text
Abstract: Cells and tissue integrity is constantly challenged by the necessity to adapt and respond to mechanical loads. Among the cellular components, the nucleus possesses mechano-sensing and mechanotransduction capabilities, yet the molecular mechanisms involved remain poorly defined. We postulated that the mechanical properties of the chromatin and its compartmentalization into condensates contribute to the nuclear adaptation to external forces, while preserving its integrity. By interrogating the effects of MLL4 loss-of-function in Kabuki Syndrome, we found that the balancing of transcriptional and Polycomb condensates tunes the nuclear responsiveness to external mechanical forces. We showed that MLL4 acts as a chromatin mechano-sensor by clustering into condensates through its Prion-like domain, and its response was regulated by the chromatin context. Furthermore, the mechano-sensing activity of MLL4 condensates is instrumental to withstand the physical challenges that nuclei experience during cell confinement and migration by preserving their integrity. In Kabuki Syndrome persistent rupture of nuclear envelope triggers cGAS-STING activation, which leads to programmed cell death. Ultimately, these results demonstrate the critical role chromatin compartments play in mechano-responses and how they impact pathological conditions by stimulating cGAS-STING signaling.
23.

Intracellular Tau Fragment Droplets Serve as Seeds for Tau Fibrils.

blue CRY2olig Neuro-2a Organelle manipulation
bioRxiv, 4 May 2024 DOI: 10.1101/2023.09.10.557018 Link to full text
Abstract: Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer’s disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. This intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.
24.

Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation.

blue CRY2/CRY2 MCF7 Organelle manipulation
bioRxiv, 18 Apr 2024 DOI: 10.1101/2023.11.22.568289 Link to full text
Abstract: Liquid-liquid phase separation (LLPS) has emerged as a major organizing principle in cells. Recent work showed that multiple components of integrin-mediated focal adhesions including p130Cas can form LLPS, which govern adhesion dynamics and related cell behaviors. In this study, we found that the focal adhesion protein p130Cas drives formation of structures with the characteristics of LLPS that bud from focal adhesions into the cytoplasm. Condensing concentrated cytoplasm around p130Cas-coated beads allowed their isolation, which were enriched in a subset of focal adhesion proteins, mRNAs and RNA binding proteins, including those implicated in inhibiting mRNA translation. Plating cells on very high concentrations of fibronectin to induce large focal adhesions inhibited message translation which required p130Cas and correlated with droplet formation. Photo-induction of p130Cas condensates using the Cry2 system also reduced translation. These results identify a novel regulatory mechanism in which high adhesion limits message translation via induction of p130Cas-dependent cytoplasmic LLPS. This mechanism may contribute to the quiescent state of very strongly adhesive myofibroblasts and senescent cells.
25.

A protein condensation network contextualises cell fate decisions.

blue CRY2olig S. cerevisiae Cell cycle control Organelle manipulation
bioRxiv, 18 Apr 2024 DOI: 10.1101/2024.04.18.590070 Link to full text
Abstract: For cells to thrive, they must make appropriate fate decisions based on a myriad of internal and external stimuli. But how do they integrate these different forms of information to contextualise their decisions? Old yeast cells showed an ability to dampen their proliferation as they entered senescence. Conversely, they had an enhanced ability to promote proliferation during escape from pheromone stimulation. A network of nucleoprotein condensation states involving processing bodies (P-bodies) and the prion-like RNA-binding protein, Whi3, controlled these opposing fate decisions. In old but not in young cells, condensation of Whi3 was both necessary and sufficient for senescence entry. In old cells, Whi3 localised to age-dependent P-bodies. Preventing their formation stopped Whi3 condensation from driving senescence entry. Challenging old cells with an external stimulus, pheromone, revealed that the condensates had a second function: potentiating the cell's ability to trigger escape from the mating pheromone response. These findings identify biomolecular condensation as an integrator of contextual information as cells make decisions, enabling them to navigate overlapping life events.
Submit a new publication to our database