Showing 1 - 17 of 17 results
Not Review
Not Background
1.
A modular strategy for extracellular vesicle-mediated CRISPR-Cas9 delivery through aptamer-based loading and UV-activated cargo release.
-
Elsharkasy, OM
-
Hegeman, CV
-
Lansweers, I
-
Cotugno, OL
-
de Groot, IY
-
de Wit, ZEMNJ
-
Liang, X
-
Garcia-Guerra, A
-
Moorman, NJA
-
Lefferts, J
-
de Voogt, WS
-
Gitz-Francois, JJ
-
van Wesel, ACW
-
El Andaloussi, S
-
Schiffelers, RM
-
Kooijmans, SAA
-
Mastrobattista, E
-
Vader, P
-
de Jong, OG
Abstract:
CRISPR-Cas9 gene editing technology offers the potential to permanently repair genes containing pathological mutations. However, efficient intracellular delivery of the Cas9 ribonucleoprotein complex remains one of the major hurdles in its therapeutic application. Extracellular vesicles (EVs) are biological nanosized membrane vesicles released by cells, that play an important role in intercellular communication. Due to their innate capability of intercellular transfer of proteins, RNA, and various other biological cargos, EVs have emerged as a novel promising strategy for the delivery of macromolecular biotherapeutics, including CRISPR-Cas9 ribonucleoproteins. Here, we present a versatile, modular strategy for the loading and delivery of Cas9. We leverage the high affinity binding of MS2 coat proteins (MCPs) fused to EV-enriched proteins to MS2 aptamers incorporated into single guide RNAs (sgRNAs), in combination with a UV-activated photocleavable linker domain, PhoCl. Combined with the Vesicular stomatitis virus G (VSV-G) protein this modular platform enables efficient loading and subsequent delivery of the Cas9 ribonucleoprotein complex, which shows critical dependence on the incorporation and activation of the photocleavable linker domain. As this approach does not require any direct fusion of Cas9 to EV-enriched proteins, we demonstrate that Cas9 can readily be exchanged for other variants, including transcriptional activator dCas9-VPR and adenine base editor ABE8e, as confirmed by various sensitive fluorescent reporter assays. Taken together, we describe a robust and modular strategy for successful Cas9 delivery, which can be applied for CRISPR-Cas9-based genetic engineering as well as transcriptional regulation, underlining the potential of EV-mediated strategies for the treatment of genetic diseases.
2.
PhoCoil: An Injectable and Photodegradable Single-component Recombinant Protein Hydrogel for Localized Therapeutic Cell Delivery.
Abstract:
Hydrogel biomaterials offer great promise for 3D cell culture and therapeutic delivery. Despite many successes, challenges persist in that gels formed from natural proteins are only marginally tunable while those derived from synthetic polymers lack intrinsic bioinstructivity. Towards the creation of biomaterials with both excellent biocompatibility and customizability, recombinant protein-based hydrogels have emerged as molecularly defined and user-programmable platforms that mimic the proteinaceous nature of the extracellular matrix. Here, we introduce PhoCoil, a dynamically tunable recombinant hydrogel formed from a single protein component with unique multi-stimuli responsiveness. Physical crosslinking through coiled-coil interactions promotes rapid shear-thinning and self-healing behavior, rendering the gel injectable, while an included photodegradable motif affords on-demand network dissolution via visible light. PhoCoil gel photodegradation can be spatiotemporally and lithographically controlled in a dose-dependent manner, through complex tissue, and without harm to encapsulated cells. We anticipate that PhoCoil will enable new applications in tissue engineering and regenerative medicine.
3.
An optogenetic method for the controlled release of single molecules.
-
Kashyap, P
-
Bertelli, S
-
Cao, F
-
Kostritskaia, Y
-
Blank, F
-
Srikanth, NA
-
Schlack-Leigers, C
-
Saleppico, R
-
Bierhuizen, D
-
Lu, X
-
Nickel, W
-
Campbell, RE
-
Plested, AJR
-
Stauber, T
-
Taylor, MJ
-
Ewers, H
Abstract:
We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells. We were able to reconstitute ion conductance by delivering BK and LRRC8/volume-regulated anion channels to the plasma membrane. Finally we were able to induce NF-kB signaling in T lymphoblasts stimulated by interleukin-1 by controlled release of a signaling protein that had been knocked out. We observed light-induced formation of functional inflammatory signaling complexes that triggered phosphorylation of the inhibitor of nuclear factor kappa-B kinase only in activated cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single-molecule level.
4.
A single-component, light-assisted uncaging switch for endoproteolytic release.
-
Cui, M
-
Lee, S
-
Ban, SH
-
Ryu, JR
-
Shen, M
-
Yang, SH
-
Kim, JY
-
Choi, SK
-
Han, J
-
Kim, Y
-
Han, K
-
Lee, D
-
Sun, W
-
Kwon, HB
-
Lee, D
Abstract:
Proteases function as pivotal molecular switches, initiating numerous biological events. Notably, potyviral protease, derived from plant viruses, has emerged as a trusted proteolytic switch in synthetic biological circuits. To harness their capabilities, we have developed a single-component photocleavable switch, termed LAUNCHER (Light-Assisted UNcaging switCH for Endoproteolytic Release), by employing a circularly permutated tobacco etch virus protease and a blue-light-gated substrate, which are connected by fine-tuned intermodular linkers. As a single-component system, LAUNCHER exhibits a superior signal-to-noise ratio compared with multi-component systems, enabling precise and user-controllable release of payloads. This characteristic renders LAUNCHER highly suitable for diverse cellular applications, including transgene expression, tailored subcellular translocation and optochemogenetics. Additionally, the plug-and-play integration of LAUNCHER into existing synthetic circuits facilitates the enhancement of circuit performance. The demonstrated efficacy of LAUNCHER in improving existing circuitry underscores its significant potential for expanding its utilization in various applications.
5.
Fluorogenesis: Inducing Fluorescence in a Non-Fluorescent Protein Through Photoinduced Chromophore Transfer of a Genetically Encoded Chromophore.
Abstract:
Fluorescent proteins, while essential for bioimaging, are limited to visualizing cellular localization without offering additional functionality. We report for the first time a strategy to expand the chemical, structural, and functional diversity of fluorescent proteins by harnessing light to induce red fluorescence in a previously non-fluorescent protein. We accomplish this by inducing the transfer of the genetically encoded chromophore from a photocleavable protein (PhoCl1) to a non-fluorescent kinase (MjRibK) inducing red fluorescence in the latter. We have employed analytical and spectroscopic techniques to validate the presence of red fluorescence in MjRibK. Furthermore, molecular dynamics simulations were carried out to investigate the amino acid residues of MjRibK involved in the generation of red fluorescence. Finally, we demonstrate the ability of the red fluorescent MjRibK to operate as a cyclable high-temperature sensor. We anticipate that this light-induced chromophore transfer strategy will open new possibilities for developing multifunctional genetically encoded fluorescent sensors.
6.
Pyroptosis Induction and Visualization at the Single-Cell Level Using Optogenetics.
Abstract:
Pyroptosis has been identified as a pro-inflammatory form of programmed cell death. It can be triggered by different stimuli including pathogen invasion or cell stress/danger signals releasing hundreds of proteins upon lysis that cause complex responses in neighboring cells. Pyroptosis is executed by the gasdermin (GSDM) family of proteins which, upon cleavage by caspases, form transmembrane pores that release cytokines to induce inflammation. However, despite the importance of gasdermins in the development of inflammatory diseases and cancer, a lot is still to be understood in the downstream consequences of this cell death pathway. Currently, conventional methods, such as drug treatments or chemically forced oligomerization, are limited in the spatiotemporal analysis of pyroptosis signaling in the cellular population, since all cells are primed for undergoing pyroptosis. Here, we provide a protocol for the application of a novel optogenetics tool called NLS_PhoCl_N-GSDMD_mCherry that enables precise temporal and spatial pyroptosis induction in a confocal microscopy setup, followed by imaging of the cell death process and subsequent quantitative analysis of the experiment. This tool opens new opportunities for the study of pyroptosis activation and of its effects on the bystander cell responses.
7.
A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing.
Abstract:
The experimental need to engineer the genome both in time and space, has led to the development of several photoactivatable Cre recombinase systems. However, the combination of inefficient and non-intentional background recombination has prevented thus far the wide application of these systems in biological and biomedical research. Here, we engineer an optimized photoactivatable Cre recombinase system that we refer to as doxycycline- and light-inducible Cre recombinase (DiLiCre). Following extensive characterization in cancer cell and organoid systems, we generate a DiLiCre mouse line, and illustrated the biological applicability of DiLiCre for light-induced mutagenesis in vivo and positional cell-tracing by intravital microscopy. These experiments illustrate how newly formed HrasV12 mutant cells follow an unnatural movement towards the interfollicular dermis. Together, we develop an efficient photoactivatable Cre recombinase mouse model and illustrate how this model is a powerful genome-editing tool for biological and biomedical research.
8.
Optogenetic Protein Cleavage in Zebrafish Embryos.
Abstract:
A wide array of optogenetic tools is available that allow for precise spatiotemporal control over many cellular processes. These tools have been especially popular among zebrafish researchers who take advantage of the embryo's transparency. However, photocleavable optogenetic proteins have not been utilized in zebrafish. We demonstrate successful optical control of protein cleavage in embryos using PhoCl, a photocleavable fluorescent protein. This optogenetic tool offers temporal and spatial control over protein cleavage events, which we demonstrate in light-triggered protein translocation and apoptosis.
9.
Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering.
Abstract:
The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular "plug and play" design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) -a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.
10.
Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry.
Abstract:
Gasdermin D forms large, ~21 nm diameter pores in the plasma membrane to drive the cell death program pyroptosis. These pores are thought to be permanently open, and the resultant osmotic imbalance is thought to be highly damaging. Yet some cells mitigate and survive pore formation, suggesting an undiscovered layer of regulation over the function of these pores. However, no methods exist to directly reveal these mechanistic details. Here, we combine optogenetic tools, live cell fluorescence biosensing, and electrophysiology to demonstrate that gasdermin pores display phosphoinositide-dependent dynamics. We quantify repeated and fast opening-closing of these pores on the tens of seconds timescale, visualize the dynamic pore geometry, and identify the signaling that controls dynamic pore activity. The identification of this circuit allows pharmacological tuning of pyroptosis and control of inflammatory cytokine release by living cells.
11.
Designer membraneless organelles sequester native factors for control of cell behavior.
Abstract:
Subcellular compartmentalization of macromolecules increases flux and prevents inhibitory interactions to control biochemical reactions. Inspired by this functionality, we sought to build designer compartments that function as hubs to regulate the flow of information through cellular control systems. We report a synthetic membraneless organelle platform to control endogenous cellular activities through sequestration and insulation of native proteins. We engineer and express a disordered protein scaffold to assemble micron-size condensates and recruit endogenous clients via genomic tagging with high-affinity dimerization motifs. By relocalizing up to 90% of targeted enzymes to synthetic condensates, we efficiently control cellular behaviors, including proliferation, division and cytoskeletal organization. Further, we demonstrate multiple strategies for controlled cargo release from condensates to switch cells between functional states. These synthetic organelles offer a powerful and generalizable approach to modularly control cell decision-making in a variety of model systems with broad applications for cellular engineering.
12.
Improved Photocleavable Proteins with Faster and More Efficient Dissociation.
Abstract:
The photocleavable protein (PhoCl) is a green-to-red photoconvertible fluorescent protein that, when illuminated with violet light, undergoes main chain cleavage followed by spontaneous dissociation of the resulting fragments. The first generation PhoCl (PhoCl1) exhibited a relative slow rate of dissociation, potentially limiting its utilities for optogenetic control of cell physiology. In this work, we report the X-ray crystal structures of the PhoCl1 green state, red state, and cleaved empty barrel. Using structure-guided engineering and directed evolution, we have developed PhoCl2c with higher contrast ratio and PhoCl2f with faster dissociation. We characterized the performance of these new variants as purified proteins and expressed in cultured cells. Our results demonstrate that PhoCl2 variants exhibit faster and more efficient dissociation, which should enable improved optogenetic manipulations of protein localization and protein-protein interactions in living cells.
13.
SPLIT: Stable Protein Coacervation using a Light Induced Transition.
Abstract:
Protein coacervates serve as hubs to concentrate and sequester proteins and nucleotides and thus function as membrane-less organelles to manipulate cell physiology. We have engineered a coacervating protein to create tunable, synthetic membrane-less organelles that assemble in response to a single pulse of light. Coacervation is driven by the intrinsically disordered RGG domain from the protein LAF-1, and opto-responsiveness is coded by the protein PhoCl which cleaves in response to 405 nm light. We developed a fusion protein containing a solubilizing maltose binding protein domain, PhoCl, and two copies of the RGG domain. Several seconds of illumination at 405 nm is sufficient to cleave PhoCl, removing the solubilization domain and enabling RGG-driven coacervation within minutes in cellular-sized water-in-oil emulsions. An optimized version of this system displayed light-induced coacervation in Saccharomyces cerevisiae. The methods described here provide novel strategies for inducing protein phase separation using light.
14.
Hydrogels With Tunable Mechanical Properties Based on Photocleavable Proteins.
Abstract:
Hydrogels with photo-responsive mechanical properties have found broad biomedical applications, including delivering bioactive molecules, cell culture, biosensing, and tissue engineering. Here, using a photocleavable protein, PhoCl, as the crosslinker we engineer two types of poly(ethylene glycol) hydrogels whose mechanical stability can be weakened or strengthened, respectively, upon visible light illumination. In the photo weakening hydrogels, photocleavage leads to rupture of the protein crosslinkers, and decrease of the mechanical properties of the hydrogels. In contrast, in the photo strengthening hydrogels, by properly choosing the crosslinking positions, photocleavage does not rupture the crosslinking sites but exposes additional cryptical reactive cysteine residues. When reacting with extra maleimide groups in the hydrogel network, the mechanical properties of the hydrogels can be enhanced upon light illumination. Our study indicates that photocleavable proteins could provide more designing possibilities than the small-molecule counterparts. A proof-of-principle demonstration of spatially controlling the mechanical properties of hydrogels was also provided.
15.
Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light.
Abstract:
Precise integration of individual cell behaviors is indispensable for collective tissue morphogenesis and maintenance of tissue integrity. Organized multicellular behavior is achieved via mechanical coupling of individual cellular contractility, mediated by cell adhesion molecules at the cell-cell interface. Conventionally, gene depletion or laser microsurgery has been used for functional analysis of intercellular mechanotransduction. Nevertheless, these methods are insufficient to investigate either the spatiotemporal dynamics or the biomolecular contribution in cell-cell mechanical coupling within collective multicellular behaviors. Herein, we present our effort in adaption of PhoCl for attenuation of cell-to-cell tension transmission mediated by E-cadherin. To release intercellular contractile tension applied on E-cadherin molecules with external light, a genetically encoded photocleavable module called PhoCl was inserted into the intracellular domain of E-cadherin, thereby creating photocleavable cadherin (PC-cadherin). In response to light illumination, the PC-cadherin cleaved into two fragments inside cells, resulting in attenuating mechanotransduction at intercellular junctions in living epithelial cells. Light-induced perturbation of the intercellular tension balance with surrounding cells changed the cell shape in an epithelial cell sheet. The method is expected to enable optical manipulation of force-mediated cell-to-cell communications in various multicellular behaviors, which contributes to a deeper understanding of embryogenesis and oncogenesis.
16.
Genetically Encoded Photocleavable Linkers for Patterned Protein Release from Biomaterials.
Abstract:
Given the critical role that proteins play in almost all biological processes, there is great interest in controlling their presentation within and release from biomaterials. Despite such outstanding enthusiasm, previously developed strategies in this regard result in ill-defined and heterogeneous populations with substantially decreased activity, precluding their successful application to fragile species including growth factors. Here, we introduce a modular and scalable method for creating monodisperse, genetically encoded chimeras that enable bioactive proteins to be immobilized within and subsequently photoreleased from polymeric hydrogels. Building upon recent developments in chemoenzymatic reactions, bioorthogonal chemistry, and optogenetics, we tether fluorescent proteins, model enzymes, and growth factors site-specifically to gel biomaterials through a photocleavable protein (PhoCl) that undergoes irreversible backbone photoscission upon exposure to cytocompatible visible light (λ ≈ 400 nm) in a dose-dependent manner. Mask-based and laser-scanning lithographic strategies using commonly available light sources are employed to spatiotemporally pattern protein release from hydrogels while retaining their full activity. The photopatterned epidermal growth factor presentation is exploited to promote anisotropic cellular proliferation in 3D. We expect these methods to be broadly useful for applications in diagnostics, drug delivery, and regenerative medicine.
17.
Optogenetic control with a photocleavable protein, PhoCl.
-
Zhang, W
-
Lohman, AW
-
Zhuravlova, Y
-
Lu, X
-
Wiens, MD
-
Hoi, H
-
Yaganoglu, S
-
Mohr, MA
-
Kitova, EN
-
Klassen, JS
-
Pantazis, P
-
Thompson, RJ
-
Campbell, RE
Abstract:
To expand the range of experiments that are accessible with optogenetics, we developed a photocleavable protein (PhoCl) that spontaneously dissociates into two fragments after violet-light-induced cleavage of a specific bond in the protein backbone. We demonstrated that PhoCl can be used to engineer light-activatable Cre recombinase, Gal4 transcription factor, and a viral protease that in turn was used to activate opening of the large-pore ion channel Pannexin-1.