Showing 1 - 25 of 118 results
Not Review
Not Background
1.
Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT.
-
Ong, Q
-
Lim, LTR
-
Goh, C
-
Liao, Y
-
Chan, SE
-
Lim, CJY
-
Kam, V
-
Yap, J
-
Tseng, T
-
Desrouleaux, R
-
Wang, LC
-
Ler, SG
-
Lim, SL
-
Kim, SY
-
Sobota, RM
-
Bennett, AM
-
Han, W
-
Yang, X
Abstract:
The post-translational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification has an essential role in signal transduction, gene expression, organelle function and systemic physiology. Here, we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression, which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to localize to specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate the downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool for defining the role of O-GlcNAcylation in cell signaling and physiology.
2.
Dysfunctional RNA binding protein induced neurodegeneration is attenuated by inhibition of the integrated stress response.
Abstract:
Dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributes to neurodegeneration, the primary cause of permanent disability in multiple sclerosis (MS). To better understand the role of hnRNP A1 dysfunction in the pathogenesis of neurodegeneration, we utilized optogenetics-driven hnRNP A1 clustering to model its dysfunction in neuron-like differentiated Neuro-2A cells. hnRNP A1 clustering activates the integrated stress response (ISR) and results in a neurodegenerative phenotype marked by decreased neuronal protein translation and neurite loss. Small molecule inhibition of the ISR with either PERKi (GSK2606414) or ISRIB (integrated stress response inhibitor) attenuated both the decrease in neuronal translation and neurite loss, without affecting hnRNP A1 clustering. We then confirmed a strong association between hnRNP A1 clustering and ISR activation in neurons from MS brains. These data illustrate that hnRNP A1 dysfunction promotes neurodegeneration by activation of the ISR in vitro and in vivo, thus revealing a novel therapeutic target to reduce neurodegeneration and subsequent disability in MS.
3.
CELF2 promotes tau exon 10 inclusion via hinge domain-mediated nuclear condensation.
Abstract:
Alternative splicing is a fundamental process that contributes to the functional diversity and complexity of proteins. The regulation of each alternative splicing event involves the coordinated action of multiple RNA-binding proteins, creating a diverse array of alternatively spliced products. Dysregulation of alternative splicing is associated with various diseases, including neurodegeneration. Here we demonstrate that CELF2, a splicing regulator and a GWAS-identified risk factor for Alzheimer’s disease, binds to mRNAs associated with neurodegenerative diseases, with a specific interaction observed in the intron adjacent to exon 10 on Tau mRNA. Loss of CELF2 in the mouse brain results in a decreased inclusion of Tau exon 10, leading to a reduced 4R:3R ratio. Further exploration shows that the hinge domain of CELF2 possesses an intrinsically disordered region (IDR), which mediates CELF2 condensation and function. The functionality of IDR in regulating CELF2 function is underscored by its substitutability with IDRs from FUS and TAF15. Using TurboID we identified proteins that interact with CELF2 through its IDR. We revealed that CELF2 co-condensate with NOVA2 and SFPQ, which coordinate with CELF2 to regulate the alternative splicing of Tau exon 10. A negatively charged residue within the IDR (D388), which is conserved among CELF proteins, is critical for CELF2 condensate formation, interactions with NOVA2 and SFPQ, and function in regulating tau exon 10 splicing. Our data allow us to propose that CELF2 regulates Tau alternative splicing by forming condensates through its IDR with other splicing factors, and that the composition of the proteins within the condensates determines the outcomes of alternative splicing events.
4.
Single cells can resolve graded stimuli.
Abstract:
Cells use signalling pathways as windows into the environment to gather information, transduce it into their interior, and use it to drive behaviours. MAPK (ERK) is a highly conserved signalling pathway in eukaryotes, directing multiple fundamental cellular behaviours such as proliferation, migration, and differentiation, making it of few central hubs in the signalling circuitry of cells. Despite this versatility of behaviors, population-level measurements have reported low information content (< 1 bit) relayed through the ERK pathway, rendering the population barely able to distinguish the presence or absence of stimuli. Here, we contrast the information transmitted by a single cell and a population of cells. Using a combination of optogenetic experiments, data analysis based on information theory framework, and numerical simulations we quantify the amount of information transduced from the receptor to ERK, from responses to singular, brief and sparse input pulses. We show that single cells are indeed able to resolve between graded stimuli, yielding over 2 bit of information, however showing a large population heterogeneity
5.
The G3BP Stress-Granule Proteins Reinforce the Translation Program of the Integrated Stress Response.
Abstract:
When mammalian cells are exposed to extracellular stress, they coordinate the condensation of stress granules (SGs) through the action of key nucleating proteins G3BP1 and G3BP2 (G3BPs) and, simultaneously, undergo a massive reduction in translation.1-5 Although SGs and G3BPs have been linked to this translation response, their overall impact has been unclear. Here, we investigate the longstanding question of how, and indeed whether, G3BPs and SGs shape the stress translation response. We find that SGs are enriched for mRNAs that are resistant to the stress-induced translation shutdown. Although the accurate recruitment of these stress-resistant mRNAs does require the context of stress, a combination of optogenetic tools and spike-normalized ribosome profiling demonstrates that G3BPs and SGs are necessary and sufficient to both help prioritize the translation of their enriched mRNAs and help suppress cytosolic translation. Together these results support a model in which G3BPs and SGs reinforce the stress translation program by prioritizing the translation of their resident mRNAs.
6.
Catalytic-dependent and independent functions of the histone acetyltransferase CBP promote pioneer factor-mediated zygotic genome activation.
Abstract:
Immediately after fertilization the genome is transcriptionally quiescent. Maternally encoded pioneer transcription factors reprogram the chromatin state and facilitate the transcription of the zygotic genome. In Drosophila, transcription is initiated by the pioneer factor Zelda. While Zelda-occupied sites are enriched with histone acetylation, a post-translational mark associated with active cis-regulatory regions, the functional relationship between Zelda and histone acetylation in zygotic genome activation remained unclear. We show that Zelda-mediated recruitment of the histone acetyltransferase CBP is essential for zygotic transcription. CBP catalytic activity is necessary for release of RNA Polymerase II (Pol II) into transcription elongation and for embryonic development. However, CBP also activates zygotic transcription independent of acetylation through Pol II recruitment. Neither acetylation nor CBP are required for the pioneering function of Zelda. Our data suggest that pioneer factor-mediated recruitment of CBP is a conserved mechanism required to activate zygotic transcription but that this role is separable from the function of pioneer factors in restructuring chromatin accessibility.
7.
C9orf72 poly-PR forms anisotropic condensates causative of nuclear TDP-43 pathology.
Abstract:
Proteinaceous inclusions formed by C9orf72-derived dipeptide-repeat (DPR) proteins are a histopathological hallmark in ∼50% of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) cases. However, DPR aggregation/inclusion formation could not be efficiently recapitulated in cell models for four out of five DPRs. In this study, using optogenetics, we achieved chemical-free poly-PR condensation/aggregation in cultured cells including human motor neurons, with spatial and temporal control. Strikingly, nuclear poly-PR condensates had anisotropic, hollow-center appearance, resembling TDP-43 anisosomes, and their growth was limited by RNA. These condensates induced abnormal TDP-43 granulation in the nucleus without stress response activation. Cytoplasmic poly-PR aggregates forming under prolonged opto-stimulation were more persistent than its nuclear condensates, selectively sequestered TDP-43 in a demixed state and surrounded spontaneous stress granules. Thus, poly-PR condensation accompanied by nuclear TDP-43 dysfunction may constitute an early pathological event in C9-ALS/FTD. Anisosome-type condensates of disease-linked proteins may represent a common molecular species in neurodegenerative disease.
8.
TPM4 condensates glycolytic enzymes to fuel actin reorganization under hyperosmotic stress.
Abstract:
Actin homeostasis is fundamental for cell structure and consumes a large portion of cellular ATP. It has been documented in the literature that certain glycolytic enzymes can interact with actin, indicating an intricate interplay between the cytoskeleton and cellular metabolism. Here we report that hyperosmotic stress triggers actin severing and subsequent phase separation of the actin-binding protein TPM4. TPM4 condensates glycolytic enzymes such as HK2, PFKM, and PKM2, and adhere to and wrap around actin filaments. Notably, the condensates of TPM4 and glycolytic enzymes are enriched of NADH and ATP, suggestive of their functional importance in cell metabolism. At cellular level, actin filaments assembly is enhanced upon hyperosmotic stress and TPM4 condensation, while depletion of TPM4 impaired osmolarity-induced actin reorganization. At tissue level, co-localized condensates of TPM4 and glycolytic enzymes are observed in renal tissues subjected to hyperosmotic stress. Together, our findings suggest that stress-induced actin perturbation may act on TPM4 to organize glycolytic hubs that tether energy production to cytoskeletal reorganization.
9.
Activation of NF-κB signaling by optogenetic clustering of IKKα and β.
Abstract:
A large percentage of proteins form higher-order structures in order to fulfill their function. These structures are crucial for the precise spatial and temporal regulation of the cellular signaling network. Investigation of this network requires sophisticated research tools, such as optogenetic tools, that allow dynamic control over the signaling molecules. Cryptochrome 2 and its variations are the best-characterized oligomerizing photoreceptors the optogenetics toolbox has to offer. Therefore, we utilized this switch and combined it with an eGFP-binding nanobody, to build a toolbox of optogenetic constructs that enables the oligomerization of any eGFP-tagged protein of interest. We further introduced the higher clustering variant Cry2olig and an intrinsically disordered region to create higher-order oligomers or phase-separated assemblies to investigate the impact of different oligomerization states on eGFP-tagged signaling molecules. We apply these constructs to cluster IKKα and IKKβ, which resemble the central signaling integrator of the NF-κB pathway, thereby engineer a potent, blue-light-inducible activator of NF-κB signaling.
10.
Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors.
Abstract:
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
11.
Spatiotemporal Control of Inflammatory Lytic Cell Death Through Optogenetic Induction of RIPK3 Oligomerization.
Abstract:
Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization. La-RIPK3 activation dissects RIPK3-centric lytic cell death through the induction of RIPK3-containing necrosome, which mediates cytokine production and plasma membrane rupture. Bulk RNA-Seq analysis reveals that RIPK3 oligomerization results in partially overlapped gene expression compared to pharmacological induction of necroptosis. Additionally, La-RIPK3 activates separated groups of genes regulated by RIPK3 kinase-dependent and -independent processes. Using patterned light stimulation delivered by a spatial light modulator, we demonstrate precise spatiotemporal control of necroptosis in La-RIPK3-transduced HT-29 cells. Optogenetic control of proinflammatory lytic cell death could lead to the development of innovative experimental strategies to finetune the immune landscape for disease intervention.
12.
Ubiquitin-driven protein condensation initiates clathrin-mediated endocytosis.
-
Yuan, F
-
Gollapudi, S
-
Day, KJ
-
Ashby, G
-
Sangani, A
-
Malady, BT
-
Wang, L
-
Lafer, EM
-
Huibregtse, JM
-
Stachowiak, JC
Abstract:
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live cell settings, dynamic exchange of Eps15 proteins, a hallmark of liquid like systems, was modulated by Eps15-Ub interactions. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic recycling.
13.
Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT.
-
Ong, Q
-
Lim, R
-
Goh, C
-
Liao, Y
-
Chan, SE
-
Lim, C
-
Kam, V
-
Yap, J
-
Tseng, T
-
Desrouleaux, R
-
Wang, LC
-
Ler, SG
-
Lim, SL
-
Kim, S
-
Sobota, RM
-
Bennett, AM
-
Han, W
-
Yang, X
Abstract:
The posttranslational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification plays an essential role in signal transduction, gene expression, organelle function, and systemic physiology. Here we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to be localized at specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool to define the role of O-GlcNAcylation in cell signaling and physiology.
14.
Chromatin condensates tune nuclear mechano-sensing in Kabuki Syndrome by constraining cGAS activation.
-
D’Annunzio, S
-
Santomaso, L
-
Michelatti, D
-
Bernardis, C
-
Vitali, G
-
Lago, S
-
Testi, C
-
Pontecorvo, E
-
Poli, A
-
Pennacchio, F
-
Maiuri, P
-
Sanchez, E
-
Genevieve, D
-
Petrolli, L
-
Tarenzi, T
-
Menichetti, R
-
Potestio, R
-
Ruocco, G
-
Zippo, A
Abstract:
Cells and tissue integrity is constantly challenged by the necessity to adapt and respond to mechanical loads. Among the cellular components, the nucleus possesses mechano-sensing and mechanotransduction capabilities, yet the molecular mechanisms involved remain poorly defined. We postulated that the mechanical properties of the chromatin and its compartmentalization into condensates contribute to the nuclear adaptation to external forces, while preserving its integrity. By interrogating the effects of MLL4 loss-of-function in Kabuki Syndrome, we found that the balancing of transcriptional and Polycomb condensates tunes the nuclear responsiveness to external mechanical forces. We showed that MLL4 acts as a chromatin mechano-sensor by clustering into condensates through its Prion-like domain, and its response was regulated by the chromatin context. Furthermore, the mechano-sensing activity of MLL4 condensates is instrumental to withstand the physical challenges that nuclei experience during cell confinement and migration by preserving their integrity. In Kabuki Syndrome persistent rupture of nuclear envelope triggers cGAS-STING activation, which leads to programmed cell death. Ultimately, these results demonstrate the critical role chromatin compartments play in mechano-responses and how they impact pathological conditions by stimulating cGAS-STING signaling.
15.
Optogenetically controlled inflammasome activation demonstrates two phases of cell swelling during pyroptosis.
-
Nadjar, J
-
Monnier, S
-
Bastien, E
-
Huber, AL
-
Oddou, C
-
Bardoulet, L
-
Leloup, HB
-
Ichim, G
-
Vanbelle, C
-
Py, BF
-
Destaing, O
-
Petrilli, V
Abstract:
Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1β and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.
16.
Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation.
Abstract:
Liquid-liquid phase separation (LLPS) has emerged as a major organizing principle in cells. Recent work showed that multiple components of integrin-mediated focal adhesions including p130Cas can form LLPS, which govern adhesion dynamics and related cell behaviors. In this study, we found that the focal adhesion protein p130Cas drives formation of structures with the characteristics of LLPS that bud from focal adhesions into the cytoplasm. Condensing concentrated cytoplasm around p130Cas-coated beads allowed their isolation, which were enriched in a subset of focal adhesion proteins, mRNAs and RNA binding proteins, including those implicated in inhibiting mRNA translation. Plating cells on very high concentrations of fibronectin to induce large focal adhesions inhibited message translation which required p130Cas and correlated with droplet formation. Photo-induction of p130Cas condensates using the Cry2 system also reduced translation. These results identify a novel regulatory mechanism in which high adhesion limits message translation via induction of p130Cas-dependent cytoplasmic LLPS. This mechanism may contribute to the quiescent state of very strongly adhesive myofibroblasts and senescent cells.
17.
Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions.
Abstract:
Biomolecular condensates, often assembled through phase transition mechanisms, play key roles in organizing diverse cellular activities. The material properties of condensates, ranging from liquid droplets to solid-like glasses or gels, are key features impacting the way resident components associate with one another. However, it remains unclear whether and how different material properties would influence specific cellular functions of condensates. Here, we combine optogenetic control of phase separation with single-molecule mRNA imaging to study relations between phase behaviors and functional performance of condensates. Using light-activated condensation, we show that sequestering target mRNAs into condensates causes translation inhibition. Orthogonal mRNA imaging reveals highly transient nature of interactions between individual mRNAs and condensates. Tuning condensate composition and material property towards more solid-like states leads to stronger translational repression, concomitant with a decrease in molecular mobility. We further demonstrate that β-actin mRNA sequestration in neurons suppresses spine enlargement during chemically induced long-term potentiation. Our work highlights how the material properties of condensates can modulate functions, a mechanism that may play a role in fine-tuning the output of condensate-driven cellular activities.
18.
Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates.
Abstract:
Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.
19.
Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice.
-
Fischer, AAM
-
Robertson, HB
-
Kong, D
-
Grimm, MM
-
Grether, J
-
Groth, J
-
Baltes, C
-
Fliegauf, M
-
Lautenschläger, F
-
Grimbacher, B
-
Ye, H
-
Helms, V
-
Weber, W
Abstract:
Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.
20.
Dynamic light-responsive RhoA activity regulates mechanosensitive stem cell fate decision in 3D matrices.
Abstract:
The behavior of stem cells is regulated by mechanical cues in their niche that continuously vary due to extracellular matrix (ECM) remodeling, pulsated mechanical stress exerted by blood flow, and/or cell migration. However, it is still unclear how dynamics of mechanical cues influence stem cell lineage commitment, especially in a 3D microenvironment where mechanosensing differs from that in a 2D microenvironment. In the present study, we investigated how temporally varying mechanical signaling regulates expression of the early growth response 1 gene (Egr1), which we recently discovered to be a 3D matrix-specific mediator of mechanosensitive neural stem cell (NSC) lineage commitment. Specifically, we temporally controlled the activity of Ras homolog family member A (RhoA), which is known to have a central role in mechanotransduction, using our previously developed Arabidopsis thaliana cryptochrome-2-based optoactivation system. Interestingly, pulsed RhoA activation induced Egr1 upregulation in stiff 3D gels only, whereas static light stimulation induced an increase in Egr1 expression across a wide range of 3D gel stiffnesses. Actin assembly inhibition limited Egr1 upregulation upon RhoA activation, implying that RhoA signaling requires an actin-involved process to upregulate Egr1. Consistently, static-light RhoA activation rather than pulsed-light activation restricted neurogenesis in soft gels. Our findings indicate that the dynamics of RhoA activation influence Egr1-mediated stem cell fate within 3D matrices in a matrix stiffness-dependent manner.
21.
OptoProfilin: A Single Component Biosensor of Applied Cellular Stress.
Abstract:
The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as stress granules formed in response to energetic and oxidative stress are closely linked to ageing, cancer, cardiovascular disease, and viral infection. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.
22.
Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter.
-
Mumford, TR
-
Rae, D
-
Brackhahn, E
-
Idris, A
-
Gonzalez-Martinez, D
-
Pal, AA
-
Chung, MC
-
Guan, J
-
Rhoades, E
-
Bugaj, LJ
Abstract:
Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.
23.
Rapid Optogenetic Clustering in the Cytoplasm with BcLOVclust.
Abstract:
Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.
24.
Real-time visualization of structural dynamics of synapses in live cells in vivo.
-
Son, S
-
Nagahama, K
-
Lee, J
-
Jung, K
-
Kwak, C
-
Kim, J
-
Noh, YW
-
Kim, E
-
Lee, S
-
Kwon, HB
-
Heo, WD
Abstract:
The structural plasticity of synapses is crucial for regulating brain functions. However, currently available methods for studying synapse organization based on split fluorescent proteins (FPs) have been limited in assessing synaptic dynamics in vivo due to the irreversible binding of split FPs. Here, we develop 'SynapShot', a method for visualizing the structural dynamics of intact synapses by combining dimerization-dependent FPs (ddFPs) with engineered synaptic adhesion molecules. SynapShot allows real-time monitoring of reversible and bidirectional changes of synaptic contacts under physiological stimulation. The application of green and red ddFPs in SynapShot enables simultaneous visualization of two distinct populations of synapses. Notably, the red-shifted SynapShot is highly compatible with blue light-based optogenetic techniques, allowing for visualization of synaptic dynamics while precisely controlling specific signaling pathways. Furthermore, we demonstrate that SynapShot enables real-time monitoring of structural changes in synaptic contacts in the mouse brain during both primitive and higher-order behaviors.
25.
Optogenetic induction of caspase-8 mediated apoptosis by employing Arabidopsis cryptochrome 2.
-
Mo, W
-
Su, S
-
Shang, R
-
Yang, L
-
Zhao, X
-
Wu, C
-
Yang, Z
-
Zhang, H
-
Wu, L
-
Liu, Y
-
He, Y
-
Zhang, R
-
Zuo, Z
Abstract:
Apoptosis, a programmed cell death mechanism, is a regulatory process controlling cell proliferation as cells undergo demise. Caspase-8 serves as a pivotal apoptosis-inducing factor that initiates the death receptor-mediated apoptosis pathway. In this investigation, we have devised an optogenetic method to swiftly modulate caspase-8 activation in response to blue light. The cornerstone of our optogenetic tool relies on the PHR domain of Arabidopsis thaliana cryptochrome 2, which self-oligomerizes upon exposure to blue light. In this study, we have developed two optogenetic approaches for rapidly controlling caspase-8 activation in response to blue light in cellular systems. The first strategy, denoted as Opto-Casp8-V1, entails the fusion expression of the Arabidopsis blue light receptor CRY2 N-terminal PHR domain with caspase-8. The second strategy, referred to as Opto-Casp8-V2, involves the independent fusion expression of caspase-8 with the PHR domain and the CRY2 blue light-interacting protein CIB1 N-terminal CIB1N. Upon induction with blue light, PHR undergoes aggregation, leading to caspase-8 aggregation. Additionally, the blue light-dependent interaction between PHR and CIB1N also results in caspase-8 aggregation. We have validated these strategies in both HEK293T and HeLa cells. The findings reveal that both strategies are capable of inducing apoptosis, with Opto-Casp8-V2 demonstrating significantly superior efficiency compared to Opto-Casp8-V1.