Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 1031 results
1.

Red Light Responsive Cre Recombinase for Bacterial Optogenetics.

blue red PhyA/FHY1 VVD E. coli Nucleic acid editing Multichromatic
ACS Synth Biol, 19 Nov 2024 DOI: 10.1021/acssynbio.4c00388 Link to full text
Abstract: Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity. In this study, we introduce OptoCre-REDMAP, a red light inducible Cre recombinase system in Escherichia coli. This system harnesses the plant photoreceptors PhyA and FHY1 and a split version of Cre recombinase to achieve precise control over gene expression and DNA excision. We optimized the design by modifying the start codon of Cre and characterized the impact of different levels of induction to find conditions that produced minimal basal expression in the dark and induced full activation within 4 h of red light exposure. We characterized the system's sensitivity to ambient light, red light intensity, and exposure time, finding OptoCre-REDMAP to be reliable and flexible across a range of conditions. In coculture experiments with OptoCre-REDMAP and the blue light responsive OptoCre-VVD, we found that the systems responded orthogonally to red and blue light inputs. Direct comparisons between red and blue light induction with OptoCre-REDMAP and OptoCre-VVD demonstrated the superior penetration properties of red light. OptoCre-REDMAP's robust and selective response to red light makes it suitable for advanced synthetic biology applications, particularly those requiring precise multichromatic control.
2.

Complex optogenetic spatial patterning with split recombinase.

blue Magnets HEK293T Transgene expression
bioRxiv, 8 Nov 2024 DOI: 10.1101/2024.11.07.622567 Link to full text
Abstract: Light is a powerful and flexible input into engineered biological systems and is particularly well-suited for spatially controlling genetic circuits. While many light-responsive molecular effectors have been developed, there remains a gap in the feasibility of using them to spatially define cell fate. We addressed this problem by employing recombinase as a sensitive light-switchable circuit element which can permanently program cell fate in response to transient illumination. We show that by combining recombinase switches with hardware for precise spatial illumination, large scale heterogeneous populations of cells can be generated in situ with high resolution. We envision that this approach will enable new types of multicellular synthetic circuit engineering where the role of initial cell patterning can be directly studied with both high throughput and tight control.
3.

Drug Discovery for Diseases with High Unmet Need Through Perturbation of Biomolecular Condensates.

blue Cryptochromes LOV domains Review
J Mol Biol, 6 Nov 2024 DOI: 10.1016/j.jmb.2024.168855 Link to full text
Abstract: Biomolecular condensates (BMCs), play significant roles in organizing cellular functions in the absence of membranes through phase separation events involving RNA, proteins, and RNA-protein complexes. These membrane-less organelles form dynamic multivalent weak interactions, often involving intrinsically disordered proteins or regions (IDPs/IDRs). However, the nature of these crucial interactions, how most of these organelles are organized and are functional, remains unknown. Aberrant condensates have been implicated in neurodegenerative diseases and various cancers, presenting novel therapeutic opportunities for small molecule condensate modulators. Recent advancements in optogenetic technologies, particularly Corelet, enable precise manipulation of BMC dynamics within living cells, facilitating high-throughput screening for small molecules that target these complex structures. By elucidating the molecular mechanisms governing BMC formation and function, this innovative approach holds promise to unlock therapeutic strategies against previously "undruggable" protein targets, paving the way for effective interventions in disease.
4.

Optimizing HMG-CoA Synthase Expression for Enhanced Limonene Production in Escherichia coli through Temporal Transcription Modulation Using Optogenetics.

blue VVD E. coli in silico Endogenous gene expression
ACS Synth Biol, 5 Nov 2024 DOI: 10.1021/acssynbio.4c00432 Link to full text
Abstract: Overexpression of a single enzyme in a multigene heterologous pathway may be out of balance with the other enzymes in the pathway, leading to accumulated toxic intermediates, imbalanced carbon flux, reduced productivity of the pathway, or an inhibited growth phenotype. Therefore, optimal, balanced, and synchronized expression levels of enzymes in a particular metabolic pathway is critical to maximize production of desired compounds while maintaining cell fitness in a growing culture. Furthermore, the optimal intracellular concentration of an enzyme is determined by the expression strength, specific timing/duration, and degradation rate of the enzyme. Here, we modulated the intracellular concentration of a key enzyme, namely HMG-CoA synthase (HMGS), in the heterologous mevalonate pathway by tuning its expression level and period of transcription to enhance limonene production in Escherichia coli. Facilitated by the tuned blue-light inducible BLADE/pBad system, we observed that limonene production was highest (160 mg/L) with an intermediate transcription level of HMGS from moderate light illumination (41 au, 150 s ON/150 s OFF) throughout the growth. Owing to the easy penetration and removal of blue-light illumination from the growing culture which is hard to obtain using conventional chemical-based induction, we further explored different induction patterns of HMGS under strong light illumination (2047 au, 300 s ON) for different durations along the growth phases. We identified a specific timing of HMGS expression in the log phase (3-9 h) that led to optimal limonene production (200 mg/L). This is further supported by a mathematical model that predicts several periods of blue-light illumination (3-9 h, 0-9 h, 3-12 h, 0-12 h) to achieve an optimal expression level of HMGS that maximizes limonene production and maintains cell fitness. Compared to moderate and prolonged transcription (41 au, 150 s ON/150 s OFF, 0-73 h), strong but time-limited transcription (2047 au, 300 s ON, 3-9 h) of HMGS could maintain its optimal intracellular concentration and further increased limonene production up to 92% (250 mg/L) in the longer incubation (up to 73 h) without impacting cell fitness. This work has provided new insight into the "right amount" and "just-in-time" expression of a critical metabolite enzyme in the upper module of the mevalonate pathway using optogenetics. This study would complement previous findings in modulating HMGS expression and potentially be applicable to heterologous production of other terpenoids in E. coli.
5.

Synchronization of the segmentation clock using synthetic cell-cell signaling.

blue VVD C2C12 mESCs Signaling cascade control Control of cell-cell / cell-material interactions
bioRxiv, 4 Nov 2024 DOI: 10.1101/2024.11.04.617523 Link to full text
Abstract: Tight coordination of cell-cell signaling in space and time is vital for self-organization in tissue patterning. During vertebrate development, the segmentation clock drives oscillatory gene expression in the presomitic mesoderm (PSM), leading to the periodic formation of somites. Oscillatory gene expression is synchronized at the cell population level; inhibition of Delta-Notch signaling results in the loss of synchrony and the fusion of somites. However, it remains unclear how cell-cell signaling couples oscillatory gene expression and controls synchronization. Here, we report the reconstitution of synchronized oscillation in PSM organoids by synthetic cell-cell signaling with designed ligand-receptor pairs. Optogenetic assays uncovered that the intracellular domains of synthetic ligands play key roles in dynamic cell-cell communication. Oscillatory coupling using synthetic cell-cell signaling recovered the synchronized oscillation in PSM cells deficient for Delta-Notch signaling; non-oscillatory coupling did not induce recovery. This study reveals the mechanism by which ligand-receptor molecules coordinate the synchronization of the segmentation clock, and provides direct evidence of oscillatory cell-cell communication in the segmentation clock.
6.

Optogenetic patterning generates multi-strain biofilms with spatially distributed antibiotic resistance.

blue YtvA E. coli Control of cell-cell / cell-material interactions
Nat Commun, 1 Nov 2024 DOI: 10.1038/s41467-024-53546-1 Link to full text
Abstract: Spatial organization of microbes in biofilms enables crucial community function such as division of labor. However, quantitative understanding of such emergent community properties remains limited due to a scarcity of tools for patterning heterogeneous biofilms. Here we develop a synthetic optogenetic toolkit 'Multipattern Biofilm Lithography' for rational engineering and orthogonal patterning of multi-strain biofilms, inspired by successive adhesion and phenotypic differentiation in natural biofilms. We apply this toolkit to profile the growth dynamics of heterogeneous biofilm communities, and observe the emergence of spatially modulated commensal relationships due to shared antibiotic protection against the beta-lactam ampicillin. Supported by biophysical modeling, these results yield in-vivo measurements of key parameters, e.g., molecular beta-lactamase production per cell and length scale of antibiotic zone of protection. Our toolbox and associated findings provide quantitative insights into the spatial organization and distributed antibiotic protection within biofilms, with direct implications for future biofilm research and engineering.
7.

Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution.

blue red LOV domains Phytochromes Review
J Cell Sci, 31 Oct 2024 DOI: 10.1242/jcs.262041 Link to full text
Abstract: Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
8.

Optogenetic dissection of transcriptional repression in a multicellular organism.

blue AsLOV2 D. melanogaster in vivo Endogenous gene expression Developmental processes
Nat Commun, 26 Oct 2024 DOI: 10.1038/s41467-024-53539-0 Link to full text
Abstract: Transcriptional control is fundamental to cellular function. However, despite knowing that transcription factors can repress or activate specific genes, how these functions are implemented at the molecular level has remained elusive, particularly in the endogenous context of developing animals. Here, we combine optogenetics, single-cell live-imaging, and mathematical modeling to study how a zinc-finger repressor, Knirps, induces switch-like transitions into long-lived quiescent states. Using optogenetics, we demonstrate that repression is rapidly reversible (~1 min) and memoryless. Furthermore, we show that the repressor acts by decreasing the frequency of transcriptional bursts in a manner consistent with an equilibrium binding model. Our results provide a quantitative framework for dissecting the in vivo biochemistry of eukaryotic transcriptional regulation.
9.

Optogenetic Control of Condensates: Principles and Applications.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
J Mol Biol, 24 Oct 2024 DOI: 10.1016/j.jmb.2024.168835 Link to full text
Abstract: Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
10.

Optogenetically engineered Septin-7 enhances immune cell infiltration of tumor spheroids.

blue AsLOV2 Cos-7 MDA-MB-231 NK-92 primary mouse T cells Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
Proc Natl Acad Sci U S A, 23 Oct 2024 DOI: 10.1073/pnas.2405717121 Link to full text
Abstract: Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells. Using protein allosteric design, we reprogram the three-dimensional structure of septin-7 and insert a blue light-responsive light-oxygen-voltage-sensing domain 2 (LOV2), creating a light-controllable septin-7-LOV2 hybrid protein. Blue light inhibits septin-7 function in live cells, inducing extended cell protrusions and cell polarization, enhancing cell transmigration efficiency through confining spaces. We genetically edited human natural killer cell line (NK92) and mouse primary CD8+ T-cells expressing the engineered protein, and we demonstrated improved penetration and cytotoxicity against various tumor spheroid models. Our proposed strategy to enhance immune cell infiltration is compatible with other methodologies and therefore, could be used in combination to further improve cell-based immunotherapies against solid tumors.
11.

Light-induced targeting enables proteomics on endogenous condensates.

blue iLID mESCs Organelle manipulation
Cell, 15 Oct 2024 DOI: 10.1016/j.cell.2024.09.040 Link to full text
Abstract: Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
12.

Light-guided actin polymerization drives directed motility in protocells.

blue iLID in vitro Control of cytoskeleton / cell motility / cell shape Extracellular optogenetics
bioRxiv, 15 Oct 2024 DOI: 10.1101/2024.10.14.617543 Link to full text
Abstract: Motility is a hallmark of life’s dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 µm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
13.

Cryo-ET of actin cytoskeleton and membrane structure in lamellipodia formation using optogenetics.

blue AsLOV2 Cos-7 Control of cytoskeleton / cell motility / cell shape Organelle manipulation
bioRxiv, 14 Oct 2024 DOI: 10.1101/2024.08.13.607852 Link to full text
Abstract: Lamellipodia are sheet-like protrusions essential for migration and endocytosis, yet the ultrastructure of the actin cytoskeleton during lamellipodia formation remains underexplored. Here, we combined the optogenetic tool PA-Rac1 with cryo-ET to enable ultrastructural analysis of newly formed lamellipodia. We successfully visualized lamellipodia at various extension stages, representing phases of their formation. In minor extensions, several unbundled actin filaments formed “Minor protrusions” at the leading edge. For moderately extended lamellipodia, cross-linked actin filaments formed small filopodia-like structures, termed “mini filopodia.” In fully extended lamellipodia, filopodia matured at multiple points, and cross-linked actin filaments running nearly parallel to the leading edge increased throughout the lamellipodia. These observations suggest that actin polymerization begins in specific plasma membrane regions, forming mini filopodia that either mature into full filopodia or detach from the leading edge to form parallel filaments. This actin turnover likely drives lamellipodial protrusion, providing new insights into actin dynamics and cell migration.
14.

Optogenetic Control of the Mitochondrial Protein Import in Mammalian Cells.

blue AsLOV2 CRY2/CIB1 HEK293T Signaling cascade control Organelle manipulation
Cells, 9 Oct 2024 DOI: 10.3390/cells13191671 Link to full text
Abstract: Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import of proteins into the mitochondrial matrix via the presequence pathway on demand. OptoMitoImport is based on a two-step process: first, light-induced cleavage by a TEV protease cuts off a plasma membrane-anchored fusion construct in close proximity to a mitochondrial targeting sequence; second, the mitochondrial targeting sequence preceding the protein of interest recruits to the outer mitochondrial membrane and imports the protein fused to it into mitochondria. Upon reaching the mitochondrial matrix, the matrix processing peptidase cuts off the mitochondrial targeting sequence and releases the protein of interest. OptoMitoImport is available as a two-plasmid system as well as a P2A peptide or IRES sequence-based bicistronic system. Fluorescence studies demonstrate the release of the plasma membrane-anchored protein of interest through light-induced TEV protease cleavage and its localization to mitochondria. Cell fractionation experiments confirm the presence of the peptidase-cleaved protein of interest in the mitochondrial fraction. The processed product is protected from proteinase K treatment. Depletion of the membrane potential across the inner mitochondria membrane prevents the mitochondrial protein import, indicating an import of the protein of interest by the presequence pathway. These data demonstrate the functionality of OptoMitoImport as a generic system with which to control the post-translational mitochondrial import of proteins via the presequence pathway.
15.

Potent photoswitch for expression of biotherapeutics in mammalian cells by light.

blue EL222 CHO-K1 HEK293T Transgene expression
bioRxiv, 3 Oct 2024 DOI: 10.1101/2024.10.03.616529 Link to full text
Abstract: Precise temporal and spatial control of gene expression is of great benefit for the study of specific cellular circuits and activities. Compared to chemical inducers, light-dependent control of gene expression by optogenetics achieves a higher spatial and temporal resolution. This could also prove decisive beyond basic research for manufacturing difficult-to-express proteins in pharmaceutical bioproduction. However, current optogenetic gene-expression systems limit this application in mammalian cells as expression levels and fold induction upon light stimulation are not sufficient. To overcome this limitation, we designed a photoswitch by fusing the blue light-activated light-oxygen-voltage receptor EL222 from Erythrobacter litoralis to the three tandem transcriptional activator domains VP64, p65, and Rta. The resultant photoswitch, dubbed DEL-VPR, allows an up to 400-fold induction of target gene expression by blue light, achieving expression levels that surpass those for strong constitutive promoters. Here, we utilized DEL-VPR to enable light-induced expression of complex monoclonal and bispecific antibodies with reduced byproduct expression, increasing the yield of functional protein complexes. Our approach offers temporally controlled yet strong gene expression and applies to both academic and industrial settings.
16.

Long range mutual activation establishes Rho and Rac polarity during cell migration.

blue iLID HL-60 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Oct 2024 DOI: 10.1101/2024.10.01.616161 Link to full text
Abstract: In migrating cells, the GTPase Rac organizes a protrusive front, whereas Rho organizes a contractile back. How these GTPases are appropriately positioned at the opposite poles of a migrating cell is unknown. Here we leverage optogenetics, manipulation of cell mechanics, and mathematical modeling to reveal a surprising long-range mutual activation of the front and back polarity programs that complements their well-known local mutual inhibition. This long-range activation is rooted in two distinct modes of mechanochemical crosstalk. Local Rac-based protrusion stimulates Rho activation at the opposite side of the cell via membrane tension-based activation of mTORC2. Conversely, local Rho-based contraction induces cortical-flow-based remodeling of membrane-to-cortex interactions leading to PIP2 release, PIP3 generation, and Rac activation at the opposite side of the cell. We develop a minimal unifying mechanochemical model of the cell to explain how this long-range mechanical facilitation complements local biochemical inhibition to enable robust global Rho and Rac partitioning. Finally, we validate the importance of this long-range facilitation in the context of chemoattractant-based cell polarization and migration in primary human lymphocytes. Our findings demonstrate that the actin cortex and plasma membrane function as an integrated mechanochemical system for long-range partitioning of Rac and Rho during cell migration and likely other cellular contexts.
17.

Singlet oxygen-mediated photochemical cross-linking of an engineered fluorescent flavoprotein iLOV.

blue LOV domains Background
J Biol Chem, 30 Sep 2024 DOI: 10.1016/j.jbc.2024.107845 Link to full text
Abstract: Genetically-encoded photoactive proteins are integral tools in modern biochemical and molecular biological research. Within this tool box, truncated variants of the phototropin 2 light-oxygen-voltage (LOV) flavoprotein have been developed to photochemically generate singlet oxygen (1O2) in vitro and in vivo, yet the effect of 1O2 on these genetically encoded photosensitizers remains underexplored. In this study, we demonstrate that the "improved" LOV (iLOV) flavoprotein is capable of photochemical 1O2 generation. Once generated, 1O2 induces protein oligomerization via covalent cross-linking. The molecular targets of protein oligomerization by cross-linking are not endogenous tryptophans or tyrosines, but rather primarily histidines. Substitution of surface-exposed histidines for serine or glycine residues effectively eliminates protein cross-linking. When used in biochemical applications, such protein-protein cross-links may interfere with native biological responses to 1O2, which can be ameliorated by substitution of the surface exposed histidines of iLOV or other 1O2-generating flavoproteins.
18.

Insertion of fluorescent proteins near the plug domain of MotB generates functional stator complex.

blue LOV domains Background
bioRxiv, 27 Sep 2024 DOI: 10.1101/2024.09.27.615325 Link to full text
Abstract: Many bacteria swim by the rotation of the bacterial flagellar motor (BFM). The BFM is powered by proton translocation across the inner membrane through the hetero-heptameric MotA5MotB2 protein complex. Two periplasmic domains of MotB are critical in activating BFM rotation: (1) the peptidoglycan binding (PGB) domain that anchors MotB in the peptidoglycan layer and (2) the plug domain that modulates the proton flow. Existing cytoplasmic fluorescent probes have been shown to negatively affect motor rotation and switching. Here we inserted a fluorescent probe in the periplasm near the plug of MotB in an attempt to circumvent issues with cytoplasmic probes and for possible use in observing the mechanism of plug-based regulation of proton flow. We inserted green fluorescent protein (GFP) and iLOV, a fluorescent version of the light-oxygen-voltage (LOV) domain, in four periplasmic locations in MotB. Insertions near the plug retained motility but showed limited fluorescence for both fluorophores. Additional short, flexible glycine-serine (GS) linkers improved motility but did not improve brightness. Further optimization is necessary to improve the fluorescence of these periplasmic probes.
19.

Mechanosensitive recruitment of Vinculin maintains junction integrity and barrier function at epithelial tricellular junctions.

blue TULIP Xenopus in vivo Control of cytoskeleton / cell motility / cell shape
Curr Biol, 24 Sep 2024 DOI: 10.1016/j.cub.2024.08.060 Link to full text
Abstract: Apical cell-cell junctions, including adherens junctions and tight junctions, adhere epithelial cells to one another and regulate selective permeability at both bicellular junctions and tricellular junctions (TCJs). Although several specialized proteins are known to localize at TCJs, it remains unclear how actomyosin-mediated tension transmission at TCJs contributes to the maintenance of junction integrity and barrier function at these sites. Here, utilizing the embryonic epithelium of gastrula-stage Xenopus laevis embryos, we define a mechanism by which the mechanosensitive protein Vinculin helps anchor the actomyosin network at TCJs, thus maintaining TCJ integrity and barrier function. Using an optogenetic approach to acutely increase junctional tension, we find that Vinculin is mechanosensitively recruited to apical junctions immediately surrounding TCJs. In Vinculin knockdown (KD) embryos, junctional actomyosin intensity is decreased and becomes disorganized at TCJs. Using fluorescence recovery after photobleaching (FRAP), we show that Vinculin KD reduces actin stability at TCJs and destabilizes Angulin-1, a key tricellular tight junction protein involved in regulating barrier function at TCJs. When Vinculin KD embryos are subjected to increased tension, TCJ integrity is not maintained, filamentous actin (F-actin) morphology at TCJs is disrupted, and breaks in the signal of the tight junction protein ZO-1 signal are detected. Finally, using a live imaging barrier assay, we detect increased barrier leaks at TCJs in Vinculin KD embryos. Together, our findings show that Vinculin-mediated actomyosin organization is required to maintain junction integrity and barrier function at TCJs and reveal new information about the interplay between adhesion and barrier function at TCJs.
20.

Optogenetic Tools for Regulating RNA Metabolism and Functions.

blue red Cryptochromes LOV domains Phytochromes Review
Chembiochem, 24 Sep 2024 DOI: 10.1002/cbic.202400615 Link to full text
Abstract: RNA molecules play a vital role in linking genetic information with various cellular processes. In recent years, a variety of optogenetic tools have been engineered for regulating cellular RNA metabolism and functions. These highly desirable tools can offer non-intrusive control with spatial precision, remote operation, and biocompatibility. Here, we would like to review these currently available approaches that can regulate RNAs with light: from non-genetically encodable chemically modified oligonucleotides to genetically encoded RNA aptamers that recognize photosensitive small-molecule or protein ligands. Some key applications of these optogenetic tools will also be highlighted to illustrate how they have been used for regulating all aspects of the RNA life cycle: from RNA synthesis, maturation, modification, and translation to their degradation, localization, and phase separation control. Some current challenges and potential practical utilizations of these RNA optogenetic tools will also be discussed.
21.

In Vivo Optogenetics Based on Heavy Metal-Free Photon Upconversion Nanoparticles.

blue Magnets mouse in vivo primary mouse cortical neurons Transgene expression
Adv Mater, 23 Sep 2024 DOI: 10.1002/adma.202405509 Link to full text
Abstract: Photon upconversion (UC) from red or near-infrared (NIR) light to blue light is promising for in vivo optogenetics. However, the examples of in vivo optogenetics have been limited to lanthanide inorganic UC nanoparticles, and there have been no examples of optogenetics without using heavy metals. Here the first example of in vivo optogenetics using biocompatible heavy metal-free TTA-UC nanoemulsions is shown. A new organic TADF sensitizer, a boron difluoride curcuminoid derivative modified with a bromo group, can promote intersystem crossing to the excited triplet state, significantly improving TTA-UC efficiency. The TTA-UC nanoparticles formed from biocompatible surfactants and methyl oleate acquire water dispersibility and remarkable oxygen tolerance. By combining with genome engineering technology using the blue light-responding photoactivatable Cre-recombinase (PA-Cre), TTA-UC nanoparticles promote Cre-reporter EGFP expression in neurons in vitro and in vivo. The results open new opportunities toward deep-tissue control of neural activities based on heavy metal-free fully organic UC systems.
22.

Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology.

blue red bPAC (BlaC) DmPGC YtvA E. coli HEK293T Transgene expression
Biol Chem, 23 Sep 2024 DOI: 10.1515/hsz-2023-0205 Link to full text
Abstract: The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
23.

Rapid and reversible regulation of cell cycle progression in budding yeast using optogenetics.

blue EL222 S. cerevisiae Cell cycle control
bioRxiv, 22 Sep 2024 DOI: 10.1101/2024.09.21.614242 Link to full text
Abstract: The regulatory complexity of the eukaryotic cell cycle poses technical challenges in experiment design and data interpretation, leaving gaps in our understanding of how cells coordinate cell cycle-related processes. Traditional methods, such as knockouts and deletions are often ineffective to compensatory interactions in the cell cycle control network, while chemical agents that cause cell cycle arrest can have undesired pleiotropic effects. Synthetic inducible systems targeting specific cell cycle regulators offer potential solutions but are limited by the need for external inducers, which make fast reversibility technically challenging. To address these issues, we developed an optogenetic tool (OPTO-Cln2) that enables light-controlled and reversible regulation of G1 progression in budding yeast. Through extensive validation and benchmarking via time-lapse microscopy, we verify that OPTO-Cln2-carrying strains can rapidly toggle between normal and altered G1 progression. By integrating OPTO-Cln2 with a readout of nutrient-sensing pathways (TORC1 and PKA), we show that the oscillatory activity of these pathways is tightly coordinated with G1 progression. Finally, we demonstrate that the rapid reversibility of OPTO-Cln2 facilitates multiple cycles of synchronous arrest and release of liquid cell cultures. Our work provides a powerful new approach for studying cell cycle dynamics and the coordination of growth- with division-related processes.
24.

Inward transport of organelles drives outward migration of the spindle during C. elegans meiosis.

blue iLID C. elegans in vivo Control of cytoskeleton / cell motility / cell shape
bioRxiv, 20 Sep 2024 DOI: 10.1101/2024.09.19.613972 Link to full text
Abstract: Cortical positioning of the meiotic spindle within an oocyte is required to expel chromosomes into polar bodies to generate a zygote with the correct number of chromosomes. In C. elegans, yolk granules and mitochondria are packed inward, away from the cortex while the spindle moves outward, both in a kinesin-dependent manner. The kinesin-dependent inward packing of yolk granules suggests the existence of microtubules with minus ends at the cortex and plus ends extending inward, making it unclear how kinesin moves the spindle outward. We hypothesized that inward packing of organelles might indirectly force the spindle outward by volume exclusion. To test this hypothesis, we generated a strain in which the only kinesin consists of motor domains with no cargo-binding tail optogenetically attached to mitochondria. This mitochondria-only kinesin packed mitochondria into a tight ball and efficiently moved the meiotic spindle to the cortex, supporting the volume exclusion hypothesis.
25.

Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.

blue AsLOV2 CRY2/CIB1 CUTLL1 HEK293 Endogenous gene expression Organelle manipulation
Sci Rep, 19 Sep 2024 DOI: 10.1038/s41598-024-71634-6 Link to full text
Abstract: The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Submit a new publication to our database