Showing 1 - 8 of 8 results
1.
Dimerization activates the Inversin complex in C. elegans.
Abstract:
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static “Inversin complex” or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states–-an active dimer and an inactive monomer–-gates the output of the Inversin complex.
2.
Mechanosensitive mTORC2 independently coordinates leading and trailing edge polarity programs during neutrophil migration.
Abstract:
By acting both upstream of and downstream from biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanosensitive mTOR complex 2 (mTORC2) programs in neutrophil polarity and motility. We find that the tension-based inhibition of leading-edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the regulation of RhoA and myosin II-based contractility at the trailing edge depend on mTORC2 kinase activity. mTORC2 is essential for spatial and temporal coordination of the front and back polarity programs for persistent migration under confinement. This mechanosensory pathway integrates multiple upstream signals, and we find that membrane stretch synergizes with biochemical co-input phosphatidylinositol (3,4,5)-trisphosphate to robustly amplify mTORC2 activation. Our results suggest that different signaling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs for efficient coordination of neutrophil shape and movement.
3.
Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum-associated degradation pathway.
Abstract:
Protein quality mechanisms are fundamental for proteostasis of eukaryotic cells. Endoplasmic reticulum-associated degradation (ERAD) is a well-studied pathway that ensures quality control of secretory and endoplasmic reticulum (ER)-resident proteins. Different branches of ERAD are involved in degradation of malfolded secretory proteins, depending on the localization of the misfolded part, the ER lumen (ERAD-L), the ER membrane (ERAD-M), and the cytosol (ERAD-C). Here we report that modification of several ER transmembrane proteins with the photosensitive degron (psd) module resulted in light-dependent degradation of the membrane proteins via the ERAD-C pathway. We found dependency on the ubiquitylation machinery including the ubiquitin-activating enzyme Uba1, the ubiquitin--conjugating enzymes Ubc6 and Ubc7, and the ubiquitin-protein ligase Doa10. Moreover, we found involvement of the Cdc48 AAA-ATPase complex members Ufd1 and Npl4, as well as the proteasome, in degradation of Sec62-myc-psd. Thus, our work shows that ERAD-C substrates can be systematically generated via synthetic degron constructs, which facilitates future investigations of the ERAD-C pathway.
4.
Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II.
Abstract:
Collective cell migration is emerging as a major driver of embryonic development, organogenesis, tissue homeostasis, and tumor dissemination. In contrast to individually migrating cells, collectively migrating cells maintain cell-cell adhesions and coordinate direction-sensing as they move. While non-muscle myosin II has been studied extensively in the context of cells migrating individually in vitro, its roles in cells migrating collectively in three-dimensional, native environments are not fully understood. Here we use genetics, Airyscan microscopy, live imaging, optogenetics, and Förster resonance energy transfer to probe the localization, dynamics, and functions of myosin II in migrating border cells of the Drosophila ovary. We find that myosin accumulates transiently at the base of protrusions, where it functions to retract them. E-cadherin and myosin co-localize at border cell-border cell contacts and cooperate to transmit directional information. A phosphomimetic form of myosin is sufficient to convert border cells to a round morphology and blebbing migration mode. Together these studies demonstrate that distinct and dynamic pools of myosin II regulate protrusion dynamics within and between collectively migrating cells and suggest a new model for the role of protrusions in collective direction sensing in vivo. Movie S1 Movie S1 Live imaging of border cell specification and delamination from anterior epithelium From Figure 1D-I. Slbo promoter driving Lifeact-GFP (green) marks border cells, Upd-Gal4, UAS-DsRed.nls (red) mark polar cell nuclei. Hoechst 33342 (blue) marks DNA. Time resolution is 4 min. Movie S2 Movie S2 Representative Z-projected and registered live imaging of Sqh-mCherry accumulating in cortical junctions (flashing arrows) during border cell migration. From Figure 3J-K. Time resolution is 25 sec. Movie S3 Movie S3 Representative Z-projected and registered live imaging of E-cad-GFP during border cell migration. From Figure 3M-N. Time resolution is 60 sec. Movie S4 Movie S4 Representative Z-projection of control flpout cells from hs-Flp;, Slbo>Lifeact-GFP; AyGal4, UAS-RFP. Clonal cells are marked by magenta nuclei (nls-RFP). Time resolution is 2.5 min. From Supp. Figure 3 A-D. Movie S5 Movie S5 Representative Z-projection of Sqh-RNAi flpout cells from hs-Flp;, Slbo>Lifeact-GFP; AyGal4, UAS-RFP, UAS-sqh-RNAi. Clonal cells are marked by magenta nuclei (nls-RFP). Time resolution is 2.5 min. From Supp. Figure 3 E-H. Movie S6 Movie S6 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-white RNAi. Time resolution is 2 min. From Supp. Figure 4 A-D. Movie S7 Movie S7 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-sqh-RNAi showing frequent side protrusions. Time resolution is 2 min. From Supp. Figure 4 E-H. White arrows indicate ectopic side and rear protrusions. Movie S8 Movie S8 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-sqh-RNAi showing long lived side protrusions. Time resolution is 2 min. From Supp. Figure 4 I-L. Movie S9 Movie S9 Representative Z-projected live imaging of c306-Gal4 driving UAS-white-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during periods of protrusive and round migration phases. From Figure 6A-D. 25 min corresponds to 6A and B and 1hr:25 min corresponds to 6C and D. Time resolution is 2.5 min. Movie S10 Movie S10 Sqh-mCherry (magenta) channel from Supplementary Movie 9. From Figure 6A-D. 25 min corresponds to 6A and B and 1hr:25 min corresponds to 6C and D. Time resolution is 2.5 min. Movie S11 Movie S11 Representative Z-projected live imaging of c306-Gal4 driving UAS-Ecad-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during a protrusive phase of migration. From Figure 6E-F. Time resolution is 2.5 min. Movie S12 Movie S12 Sqh-mCherry (magenta) channel from Supplementary Movie 11. From Figure 6E-F. Time resolution is 2.5 min. Movie S13 Movie S13 Representative Z-projected live imaging of c306-Gal4 driving UAS-Ecad-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during a rounded phase of migration. From Figure 6G-H. Time resolution is 2.5 min. Movie S14 Movie S14 Sqh-mCherry (magenta) channel from Supplementary Movie 13. From Figure 6G-H. Time resolution is 2.5 min. Movie S15 Movie S15 Example segmentation analysis from a representative Z-projected time lapse of a cluster expressing c306-Gal4 driving UAS-white-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during migration. Time lapse analyzed in Imaris by 1. segmentation of the cluster using Lifeact-GFP, 2. Rendering of Sqh-mCherry by masking the inside of the Life-act surface, 3. performing a distance transformation using the masked Sqh-mCherry that is color coded for distance from membrane (dark colors are short distances and bright/white colors are more distant), 4. combining the distance transformation with the Sqh-mCherry mask to only include the cortical 2 μm of the original Sqh-mCherry signal for quantification in Figure 6I. Movie S16 Movie S16 Representative Z-projected time lapse of Lifeact-GFP and Sqh-mCherry expressing clusters used for quantification of Figure 7B-C during protrusion/retractions cycles. Time resolution is 2 min. Movie S17 Movie S17 Sqh-mCherry channel from Supplementary movie 16. Time resolution is 2 min. Movie S18 Movie S18 Representative Z-projections of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-Sqh-E20E21 migrating border cells clusters that split. Time resolution is 2 min. Movie S19 Movie S19 Representative Z-projections of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-LifeactGFP and UAS-Sqh-E20E21 migrating border cells clusters during protrusive phase. Time resolution is 2 min. Movie S20 Movie S20 Representative Z-projection of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-Sqh-E20E21 border cells cluster at the oocyte border during a blebbing phase. Time resolution is 2 min. Movie S21 Movie S21 Representative Z-projection of control cluster expressing slbo-Gal4; UAS-PLCδ1-PH-GFP. Time resolution is 2 min. Movie S22 Movie S22 Representative Z-projection of cluster expressing slbo-Gal4; UAS-PLCδ1-PH-GFP, UAS-Rho1V14. Blebs are marked by white arrows. Time resolution is 2 min.
5.
Model-guided optogenetic study of PKA signaling in budding yeast.
Abstract:
In eukaryotes, protein kinase A (PKA) is a master regulator of cell proliferation and survival. The activity of PKA is subject to elaborate control and exhibits complex time dynamics. To probe the quantitative attributes of PKA dynamics in the yeast Saccharomyces cerevisiae, we developed an optogenetic strategy that uses a photoactivatable adenylate cyclase to achieve real-time regulation of cAMP and the PKA pathway. We capitalize on the precise and rapid control afforded by this optogenetic tool, together with quantitative computational modeling, to study the properties of feedback in the PKA signaling network and dissect the nonintuitive dynamic effects that ensue from perturbing its components. Our analyses reveal that negative feedback channeled through the Ras1/2 GTPase is delayed, pinpointing its time scale and its contribution to the dynamic features of the cAMP/PKA signaling network.
6.
Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.
Abstract:
Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses.
7.
Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration.
Abstract:
Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein-coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions.
8.
A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast.
Abstract:
Protein localization plays a central role in cell biology. Although powerful tools exist to assay the spatial and temporal dynamics of proteins in living cells, our ability to control these dynamics has been much more limited. We previously used the phytochrome B- phytochrome-interacting factor light-gated dimerization system to recruit proteins to the plasma membrane, enabling us to control the activation of intracellular signals in mammalian cells. Here we extend this approach to achieve rapid, reversible, and titratable control of protein localization for eight different organelles/positions in budding yeast. By tagging genes at the endogenous locus, we can recruit proteins to or away from their normal sites of action. This system provides a general strategy for dynamically activating or inactivating proteins of interest by controlling their localization and therefore their availability to binding partners and substrates, as we demonstrate for galactose signaling. More importantly, the temporal and spatial precision of the system make it possible to identify when and where a given protein's activity is necessary for function, as we demonstrate for the mitotic cyclin Clb2 in nuclear fission and spindle stabilization. Our light-inducible organelle-targeting system represents a powerful approach for achieving a better understanding of complex biological systems.