Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

GPCR-dependent spatiotemporal cAMP generation confers functional specificity in cardiomyocytes and cardiac responses.

blue bPAC (BlaC) HEK293 HeLa mouse cardiomyocytes zebrafish in vivo Immediate control of second messengers
bioRxiv, 13 Jul 2022 DOI: 10.1101/2022.07.13.499965 Link to full text
Abstract: Cells interpret a variety of signals through G protein-coupled receptors (GPCRs), and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different responses, despite generating similar levels of cAMP. We previously showed that GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here, we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to cue different outputs. We show that generating cAMP from the Golgi by an optogenetic approach or activated GPCR leads to regulation of a specific PKA target that increases rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We validated the physiological consequences of these observations in intact zebrafish and mice. Thus, the same GPCR regulates distinct molecular and physiological pathways depending on its subcellular location despite generating cAMP in each case.
2.

Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels.

blue FKF1/GI mouse cardiomyocytes rat cardiomyocytes tsA201 Immediate control of second messengers
Proc Natl Acad Sci USA, 17 Jan 2012 DOI: 10.1073/pnas.1116731109 Link to full text
Abstract: Ca(2+) influx via L-type Ca(v)1.2 channels is essential for multiple physiological processes, including gene expression, excitability, and contraction. Amplification of the Ca(2+) signals produced by the opening of these channels is a hallmark of many intracellular signaling cascades, including excitation-contraction coupling in heart. Using optogenetic approaches, we discovered that Ca(v)1.2 channels form clusters of varied sizes in ventricular myocytes. Physical interaction between these channels via their C-tails renders them capable of coordinating their gating, thereby amplifying Ca(2+) influx and excitation-contraction coupling. Light-induced fusion of WT Ca(v)1.2 channels with Ca(v)1.2 channels carrying a gain-of-function mutation that causes arrhythmias and autism in humans with Timothy syndrome (Ca(v)1.2-TS) increased Ca(2+) currents, diastolic and systolic Ca(2+) levels, contractility and the frequency of arrhythmogenic Ca(2+) fluctuations in ventricular myocytes. Our data indicate that these changes in Ca(2+) signaling resulted from Ca(v)1.2-TS increasing the activity of adjoining WT Ca(v)1.2 channels. Collectively, these data support the concept that oligomerization of Ca(v)1.2 channels via their C termini can result in the amplification of Ca(2+) influx into excitable cells.
Submit a new publication to our database