Showing 1 - 7 of 7 results
1.
Optogenetic EB1 inactivation shortens metaphase spindles by disrupting cortical force-producing interactions with astral microtubules.
Abstract:
Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex.1,2 In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.3 Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation,4-6 the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light-sensitive EB1 variant, π-EB1, that allows local, acute, and reversible inactivation of +TIP association with growing microtubule ends in live cells.7 We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase but instead increases astral microtubule length and number. Yet in the absence of EB1 activity, astral microtubules fail to engage the cortical dynein/dynactin machinery, and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments, likely due to compensatory molecular systems regulating vertebrate spindle dynamics.
2.
A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice.
-
Li, T
-
Chen, X
-
Qian, Y
-
Shao, J
-
Li, X
-
Liu, S
-
Zhu, L
-
Zhao, Y
-
Ye, H
-
Yang, Y
Abstract:
Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.
3.
Photoactivatable oncolytic adenovirus for optogenetic cancer therapy.
-
Hagihara, Y
-
Sakamoto, A
-
Tokuda, T
-
Yamashita, T
-
Ikemoto, S
-
Kimura, A
-
Haruta, M
-
Sasagawa, K
-
Ohta, J
-
Takayama, K
-
Mizuguchi, H
Abstract:
Virotherapy using oncolytic adenovirus is an effective anticancer strategy. However, the tumor selectivity of oncolytic adenoviruses is not enough high. To develop oncolytic adenovirus with a low risk of off-tumor toxicity, we constructed a photoactivatable oncolytic adenovirus (paOAd). In response to blue light irradiation, the expression of adenoviral E1 genes, which are necessary for adenoviral replication, is induced and replication of this adenovirus occurs. In vitro, efficient lysis of various human cancer cell lines was observed by paOAd infection followed by blue light irradiation. Importantly, there was no off-tumor toxicity unless the cells were irradiated by blue light. In vivo, tumor growth in a subcutaneous tumor model and a mouse model of liver cancer was significantly inhibited by paOAd infection followed by blue light irradiation. In addition, paOAd also showed a therapeutic effect on cancer stem cells. These results suggest that paOAd is useful as a safe and therapeutically effective cancer therapy.
4.
Optogenetic Control of Microtubule Dynamics.
Abstract:
Light can be controlled with high spatial and temporal accuracy. Therefore, optogenetics is an attractive experimental approach to modulate intracellular cytoskeleton dynamics at much faster timescales than by genetic modification. For example, in mammalian cells, microtubules (MTs) grow tens of micrometers per minute and many intracellular MT functions are mediated by a complex of +TIP proteins that dynamically associate with growing MT plus ends. EB1 is a central component of this +TIP protein network, and we recently developed a photo-inactivated π-EB1 by inserting a blue light-sensitive LOV2/Zdk1 module between the EB1 MT-binding domain and the +TIP adaptor domain. Blue light-induced π-EB1 photodissociation results in disassembly of the +TIP complex and strongly attenuates MT growth in mammalian cells.In this chapter, we discuss theoretical and practical aspects of how to perform high-resolution live-cell microscopy in combination with π-EB1 photodissociation. However, these techniques are broadly applicable to other LOV2-based and likely other blue light-sensitive optogenetics. In addition to being a tool to investigate +TIP functions acutely and with subcellular resolution, because of its dramatic and rapid change in intracellular localization, π-EB1 can serve as a powerful tool to test and characterize optogenetic illumination setups. We describe protocols on how to achieve micrometer-scale intracellular control of π-EB1 activity using patterned illumination, and we introduce a do-it-yourself LED cube design compatible with transmitted light microscopy in multiwell plates.
5.
Local control of intracellular microtubule dynamics by EB1 photodissociation.
Abstract:
End-binding proteins (EBs) are adaptors that recruit functionally diverse microtubule plus-end-tracking proteins (+TIPs) to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue-light-sensitive protein–protein interaction module between the microtubule-binding and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light. By contrast, blue-light-mediated π-EB1 photodissociation results in rapid +TIP complex disassembly, and acutely and reversibly attenuates microtubule growth independent of microtubule end association of the microtubule polymerase CKAP5 (also known as ch-TOG and XMAP215). Local π-EB1 photodissociation allows subcellular control of microtubule dynamics at the second and micrometre scale, and elicits aversive turning of migrating cancer cells. Importantly, light-mediated domain splitting can serve as a template to optically control other intracellular protein activities.
6.
A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes.
Abstract:
Several light-regulated genetic circuits have been applied to spatiotemporally control transgene expression in mammalian cells. However, simultaneous regulation of multiple genes using one genetic device by light has not yet been reported. In this study, we engineered a bidirectional expression module based on LightOn system. Our data showed that both reporter genes could be regulated at defined and quantitative levels. Simultaneous regulation of four genes was further achieved in cultured cells and mice. Additionally, we successfully utilized the bidirectional expression module to monitor the expression of a suicide gene, showing potential for photodynamic gene therapy. Collectively, we provide a robust and useful tool to simultaneously control multiple genes expression by light, which will be widely used in biomedical research and biotechnology.
7.
Fine tuning the LightOn light-switchable transgene expression system.
Abstract:
Spatiotemporal control of transgene expression in living cells provides new opportunities for the characterization of gene function in complex biological processes. We previously reported a synthetic, light-switchable transgene expression system called LightOn that can be used to control gene expression using blue light. In the present study, we modified the different promoter segments of the light switchable transcription factor GAVPO and the target gene, and assayed their effects on protein expression under dark or light conditions. The results showed that the LightOn system maintained its high on/off ratio under most modifications, but its induction efficiency and background gene expression level can be fine-tuned by modifying the core promoter, the UASG sequence number, the length of the spacer between UASG and the core promoter of the target protein, and the expression level of the GAVPO transcription factor. Thus, the LightOn gene expression system can be adapted to a large range of applications according to the requirements of the background and the induced gene expression.