Showing 1 - 17 of 17 results
1.
Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation.
Abstract:
Liquid-liquid phase separation (LLPS) has emerged as a major organizing principle in cells. Recent work showed that multiple components of integrin-mediated focal adhesions including p130Cas can form LLPS, which govern adhesion dynamics and related cell behaviors. In this study, we found that the focal adhesion protein p130Cas drives formation of structures with the characteristics of LLPS that bud from focal adhesions into the cytoplasm. Condensing concentrated cytoplasm around p130Cas-coated beads allowed their isolation, which were enriched in a subset of focal adhesion proteins, mRNAs and RNA binding proteins, including those implicated in inhibiting mRNA translation. Plating cells on very high concentrations of fibronectin to induce large focal adhesions inhibited message translation which required p130Cas and correlated with droplet formation. Photo-induction of p130Cas condensates using the Cry2 system also reduced translation. These results identify a novel regulatory mechanism in which high adhesion limits message translation via induction of p130Cas-dependent cytoplasmic LLPS. This mechanism may contribute to the quiescent state of very strongly adhesive myofibroblasts and senescent cells.
2.
Programmable RNA base editing with photoactivatable CRISPR-Cas13.
Abstract:
CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development.
3.
Enhancing Mitochondrial Functions by Optogenetic Clustering.
Abstract:
Known as the powerhouses of cells, mitochondria and its dynamics are important for their functions in cells. Herein, an optogenetic method that controlling mitochondria to form the clusters was developed. The plasmid named CRY2PHR-mCherry-Miro1TM was designed for the optogenetic system. The photoactivable protein CRY2PHR was anchored to mitochondria, via the specific organelle-targeting transmembrane domain Miro1TM. Under blue light illumination, CRY2PHR can form the oligomerization, called puncta. With the illuminated time extended, the puncta can interact, and the mitochondria were found to form clustering with reversibility and spatiotemporal controllability. The mitochondrial functions were found to enhance after the formation of optogenetic mitochondrial clusters. This method presented here provides a way to control mitochondrial clustering and raise mitochondrial functions up.
4.
Optogenetic control of NOTCH1 signaling.
Abstract:
The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.
5.
Optogenetic activators of apoptosis, necroptosis, and pyroptosis.
Abstract:
Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)—apoptosis, pyroptosis, and necroptosis—using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.
6.
MYC amplifies gene expression through global changes in transcription factor dynamics.
Abstract:
The MYC oncogene has been studied for decades, yet there is still intense debate over how this transcription factor controls gene expression. Here, we seek to answer these questions with an in vivo readout of discrete events of gene expression in single cells. We engineered an optogenetic variant of MYC (Pi-MYC) and combined this tool with single-molecule RNA and protein imaging techniques to investigate the role of MYC in modulating transcriptional bursting and transcription factor binding dynamics in human cells. We find that the immediate consequence of MYC overexpression is an increase in the duration rather than in the frequency of bursts, a functional role that is different from the majority of human transcription factors. We further propose that the mechanism by which MYC exerts global effects on the active period of genes is by altering the binding dynamics of transcription factors involved in RNA polymerase II complex assembly and productive elongation.
7.
Turning Cell Adhesions ON or OFF with High Spatiotemporal Precision Using the Green Light Responsive Protein CarH.
Abstract:
Spatiotemporal control of integrin-mediated cell adhesions to extracellular matrix regulates cell behavior with has numerous implications for biotechnological applications. In this work, two approaches for regulating cell adhesions in space and time with high precision are reported, both of which utilize green light. In the first design, CarH, which is a tetramer in the dark, is used to mask cRGD adhesion-peptides on a surface. Upon green light illumination, the CarH tetramer dissociates into its monomers, revealing the adhesion peptide so that cells can adhere. In the second design, the RGD motif is incorporated into the CarH protein tetramer such that cells can adhere to surfaces functionalized with this protein. The cell adhesions can be disrupted with green light, due to the disassembly of the CarH-RGD protein. Both designs allow for photoregulation with noninvasive visible light and open new possibilities to investigate the dynamical regulation of cell adhesions in cell biology.
8.
Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage.
Abstract:
Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability.
9.
Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light.
Abstract:
Precise integration of individual cell behaviors is indispensable for collective tissue morphogenesis and maintenance of tissue integrity. Organized multicellular behavior is achieved via mechanical coupling of individual cellular contractility, mediated by cell adhesion molecules at the cell-cell interface. Conventionally, gene depletion or laser microsurgery has been used for functional analysis of intercellular mechanotransduction. Nevertheless, these methods are insufficient to investigate either the spatiotemporal dynamics or the biomolecular contribution in cell-cell mechanical coupling within collective multicellular behaviors. Herein, we present our effort in adaption of PhoCl for attenuation of cell-to-cell tension transmission mediated by E-cadherin. To release intercellular contractile tension applied on E-cadherin molecules with external light, a genetically encoded photocleavable module called PhoCl was inserted into the intracellular domain of E-cadherin, thereby creating photocleavable cadherin (PC-cadherin). In response to light illumination, the PC-cadherin cleaved into two fragments inside cells, resulting in attenuating mechanotransduction at intercellular junctions in living epithelial cells. Light-induced perturbation of the intercellular tension balance with surrounding cells changed the cell shape in an epithelial cell sheet. The method is expected to enable optical manipulation of force-mediated cell-to-cell communications in various multicellular behaviors, which contributes to a deeper understanding of embryogenesis and oncogenesis.
10.
Optogenetic control of integrin-matrix interaction.
Abstract:
Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix–OptoIntegrin system may serve as a blueprint for rendering matrix–receptor interactions amendable to precise control with light.
11.
Light-Regulated Protein Kinases Based on the CRY2-CIB1 System.
Abstract:
Optogenetic approaches enable the control of biological processes in a time- and space-resolved manner. These light-based methods are noninvasive and by using light as sole activator minimize side effects in contrast to chemical inducers. Here, we provide a protocol for the targeted control of the activity of protein kinases in mammalian cells based on the photoreceptor cryptochrome 2 (CRY2) of Arabidopsis thaliana and its interaction partner CIB1. Blue light (450 nm)-induced binding of CRY2 to CIB1 allows the recruitment of a chimeric cytosolic protein kinase AKT1 to the plasma membrane accompanied with stimulation of its kinase activity. This protocol comprises the transient and stable implementation of the light-regulated system into mammalian cells and its stimulation by blue light-emitting diodes (450 nm) irradiation as well as analysis of the light-activated AKT1.
12.
Optogenetic clustering of CNK1 reveals mechanistic insights in RAF and AKT signalling controlling cell fate decisions.
Abstract:
Scaffold proteins such as the multidomain protein CNK1 orchestrate the signalling network by integrating and controlling the underlying pathways. Using an optogenetic approach to stimulate CNK1 uncoupled from upstream effectors, we identified selective clusters of CNK1 that either stimulate RAF-MEK-ERK or AKT signalling depending on the light intensity applied. OptoCNK1 implemented in MCF7 cells induces differentiation at low light intensity stimulating ERK activity whereas stimulation of AKT signalling by higher light intensity promotes cell proliferation. CNK1 clustering in response to increasing EGF concentrations revealed that CNK1 binds to RAF correlating with ERK activation at low EGF dose. At higher EGF dose active AKT binds to CNK1 and phosphorylates and inhibits RAF. Knockdown of CNK1 protects CNK1 from this AKT/RAF crosstalk. In C2 skeletal muscle cells CNK1 expression is induced with the onset of differentiation. Hence, AKT-bound CNK1 counteracts ERK stimulation in differentiated but not in proliferating cells. Ectopically expressed CNK1 facilitates C2 cell differentiation and knockdown of CNK1 impaired the transcriptional network underlying C2 cell differentiation. Thus, CNK1 expression, CNK1 clustering and the thereto related differential signalling processes decide on proliferation and differentiation in a cell type- and cell stage-dependent manner by orchestrating AKT and RAF signalling.
13.
Post-translational control of protein function with light using a LOV-intein fusion protein.
Abstract:
Methods for the post-translational control of protein function with light hold much value as tools in cell biology. To this end, we report a fusion protein that consists of DnaE split-inteins, flanking the light sensitive LOV2 domain of Avena sativa. The resulting chimera combines the activities of these two unrelated proteins to enable controlled formation of a functional protein via upregulation of intein splicing with blue light in bacterial and human cells.
14.
Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling.
Abstract:
Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction.
15.
Fine tuning the LightOn light-switchable transgene expression system.
Abstract:
Spatiotemporal control of transgene expression in living cells provides new opportunities for the characterization of gene function in complex biological processes. We previously reported a synthetic, light-switchable transgene expression system called LightOn that can be used to control gene expression using blue light. In the present study, we modified the different promoter segments of the light switchable transcription factor GAVPO and the target gene, and assayed their effects on protein expression under dark or light conditions. The results showed that the LightOn system maintained its high on/off ratio under most modifications, but its induction efficiency and background gene expression level can be fine-tuned by modifying the core promoter, the UASG sequence number, the length of the spacer between UASG and the core promoter of the target protein, and the expression level of the GAVPO transcription factor. Thus, the LightOn gene expression system can be adapted to a large range of applications according to the requirements of the background and the induced gene expression.
16.
Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors.
Abstract:
Advanced gene regulatory systems are necessary for scientific research, synthetic biology, and gene-based medicine. An ideal system would allow facile spatiotemporal manipulation of gene expression within a cell population that is tunable, reversible, repeatable, and can be targeted to diverse DNA sequences. To meet these criteria, a gene regulation system was engineered that combines light-sensitive proteins and programmable zinc finger transcription factors. This system, light-inducible transcription using engineered zinc finger proteins (LITEZ), uses two light-inducible dimerizing proteins from Arabidopsis thaliana, GIGANTEA and the LOV domain of FKF1, to control synthetic zinc finger transcription factor activity in human cells. Activation of gene expression in human cells engineered with LITEZ was reversible and repeatable by modulating the duration of illumination. The level of gene expression could also be controlled by modulating light intensity. Finally, gene expression could be activated in a spatially defined pattern by illuminating the human cell culture through a photomask of arbitrary geometry. LITEZ enables new approaches for precisely regulating gene expression in biotechnology and medicine, as well as studying gene function, cell-cell interactions, and tissue morphogenesis.
17.
Spatiotemporal control of gene expression by a light-switchable transgene system.
Abstract:
We developed a light-switchable transgene system based on a synthetic, genetically encoded light-switchable transactivator. The transactivator binds promoters upon blue-light exposure and rapidly initiates transcription of target transgenes in mammalian cells and in mice. This transgene system provides a robust and convenient way to spatiotemporally control gene expression and can be used to manipulate many biological processes in living systems with minimal perturbation.