Showing 1 - 5 of 5 results
1.
Far-Red Light Triggered Production of Bispecific T Cell Engagers (BiTEs) from Engineered Cells for Antitumor Application.
Abstract:
Bispecific T-cell engagers (BiTEs), which have shown potent antitumor activity in humans, are emerging as one of the most promising immunotherapeutic strategies for cancer treatment in recent years. However, the clinical application of BiTEs nowadays has been hampered by their short half-life in the circulatory system due to their low molecular weight and rapid renal clearance. Inevitable continuous infusion of BiTEs has become a routine operation in order to achieve effective treatment, although it is costly, inconvenient, time-consuming, and even painful for patients in some cases. To develop an on-demand, tunable, and reversible approach to overcome these limitations, we assembled a transcription-control device into mammalian cells based on a bacterial far-red light (FRL) responsive signaling pathway to drive the expression of a BiTE against Glypican 3 (GPC3), which is a highly tumor-specific antigen expressed in most hepatocellular carcinomas (HCC). As demonstrated in in vitro experiments, we proved that the FRL sensitive device spatiotemporally responded to the control of FRL illumination and produced a therapeutic level of BiTEs that recruited and activated human T cells to eliminate GPC3 positive tumor cells. By functionally harnessing the power of optogenetics to remotely regulate the production of BiTEs from bioengineered cells and demonstrating its effectiveness in treating tumor cells, this study provides a novel approach to achieve an in vivo supply of BiTEs, which could be potentially applied to other formats of bispecific antibodies and facilitate their clinical applications.
2.
Photoactivatable oncolytic adenovirus for optogenetic cancer therapy.
-
Hagihara, Y
-
Sakamoto, A
-
Tokuda, T
-
Yamashita, T
-
Ikemoto, S
-
Kimura, A
-
Haruta, M
-
Sasagawa, K
-
Ohta, J
-
Takayama, K
-
Mizuguchi, H
Abstract:
Virotherapy using oncolytic adenovirus is an effective anticancer strategy. However, the tumor selectivity of oncolytic adenoviruses is not enough high. To develop oncolytic adenovirus with a low risk of off-tumor toxicity, we constructed a photoactivatable oncolytic adenovirus (paOAd). In response to blue light irradiation, the expression of adenoviral E1 genes, which are necessary for adenoviral replication, is induced and replication of this adenovirus occurs. In vitro, efficient lysis of various human cancer cell lines was observed by paOAd infection followed by blue light irradiation. Importantly, there was no off-tumor toxicity unless the cells were irradiated by blue light. In vivo, tumor growth in a subcutaneous tumor model and a mouse model of liver cancer was significantly inhibited by paOAd infection followed by blue light irradiation. In addition, paOAd also showed a therapeutic effect on cancer stem cells. These results suggest that paOAd is useful as a safe and therapeutically effective cancer therapy.
3.
Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex.
-
Han, S
-
Wei, S
-
Wang, X
-
Han, X
-
Zhang, M
-
Su, M
-
Li, Y
-
Guo, J
-
Zeng, W
-
Liu, J
-
Gao, Y
-
Shen, L
Abstract:
Human hepatic C3A cells have been applied in bioartificial liver development, although these cells display low intrinsic cytochrome P450 3A4 (CYP3A4) enzyme activity. We aimed to enhance CYP3A4 enzyme activity of C3A cells utilizing CRISPR gene editing technology. We designed two CYP3A4 expression enhanced systems applying clustered regularly interspaced short palindromic repeats (CRISPR) gene technology: a CRISPR-on activation system including dCas9-VP64-GFP and two U6-sgRNA-mCherry elements, and a light-controlled CRISPR-on activation system combining our CRISPR-on activation system with an optical control system to facilitate regulation of CYP3A4 expression for various applications. Results of enzymatic activity assays displayed increased CYP3A4 activity in C3A cells expressing the CRISPR-on activation system compared with C3A cells. In addition, CYP3A4 activity increased in C3A cells expressing the light-controlled CRISPR-on activation system under blue light radiation compared with C3A cells. Notably, there was no statistical difference in the increase of CYP3A4 protein amounts induced by these two methods. After expansion in culture, C3A cells with the light-controlled CRISPR-on activation system exhibited no statistical difference in CYP3A4 mRNA levels between generations. Our findings provide a method to stably enhance functional gene expression in bioartificial liver cells with the potential for large-scale cell expansion.
4.
Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells.
Abstract:
The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light.
5.
Spatiotemporal control of gene expression by a light-switchable transgene system.
Abstract:
We developed a light-switchable transgene system based on a synthetic, genetically encoded light-switchable transactivator. The transactivator binds promoters upon blue-light exposure and rapidly initiates transcription of target transgenes in mammalian cells and in mice. This transgene system provides a robust and convenient way to spatiotemporally control gene expression and can be used to manipulate many biological processes in living systems with minimal perturbation.