Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 423 results
1.

Red Light Responsive Cre Recombinase for Bacterial Optogenetics.

blue red PhyA/FHY1 VVD E. coli Nucleic acid editing Multichromatic
ACS Synth Biol, 19 Nov 2024 DOI: 10.1021/acssynbio.4c00388 Link to full text
Abstract: Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity. In this study, we introduce OptoCre-REDMAP, a red light inducible Cre recombinase system in Escherichia coli. This system harnesses the plant photoreceptors PhyA and FHY1 and a split version of Cre recombinase to achieve precise control over gene expression and DNA excision. We optimized the design by modifying the start codon of Cre and characterized the impact of different levels of induction to find conditions that produced minimal basal expression in the dark and induced full activation within 4 h of red light exposure. We characterized the system's sensitivity to ambient light, red light intensity, and exposure time, finding OptoCre-REDMAP to be reliable and flexible across a range of conditions. In coculture experiments with OptoCre-REDMAP and the blue light responsive OptoCre-VVD, we found that the systems responded orthogonally to red and blue light inputs. Direct comparisons between red and blue light induction with OptoCre-REDMAP and OptoCre-VVD demonstrated the superior penetration properties of red light. OptoCre-REDMAP's robust and selective response to red light makes it suitable for advanced synthetic biology applications, particularly those requiring precise multichromatic control.
2.

Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution.

blue red LOV domains Phytochromes Review
J Cell Sci, 31 Oct 2024 DOI: 10.1242/jcs.262041 Link to full text
Abstract: Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
3.

Optogenetic Control of Condensates: Principles and Applications.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
J Mol Biol, 24 Oct 2024 DOI: 10.1016/j.jmb.2024.168835 Link to full text
Abstract: Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
4.

Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout.

near-infrared red BphP1/Q-PAS1 DrBphP iLight 4T1 HeLa mouse in vivo murine lung endothelial cells primary mouse cortical neurons primary mouse fibroblasts Transgene expression
bioRxiv, 18 Oct 2024 DOI: 10.1101/2024.10.18.619161 Link to full text
Abstract: We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo, light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
5.

A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases.

red DrBphP Hana3A HEK293T HeLa hMSCs mouse in vivo Transgene expression
bioRxiv, 2 Oct 2024 DOI: 10.1101/2024.09.30.615971 Link to full text
Abstract: Red light optogenetic systems are in high demand for the precise control of gene expression for gene- and cell-based therapies. Here, we report a red/far-red light-inducible photoswitch (REDLIP) system based on the chimeric photosensory protein FnBphP (Fn-REDLIP) or PnBphP (Pn-REDLIP) and their interaction partner LDB3, which enables efficient dynamic regulation of gene expression with a timescale of seconds without exogenous administration of a chromophore in mammals. We used the REDLIP system to establish the REDLIP-mediated CRISPR-dCas9 (REDLIPcas) system, enabling optogenetic activation of endogenous target genes in mammalian cells and mice. The REDLIP system is small enough to support packaging into adeno-associated viruses (AAVs), facilitating its therapeutic application. Demonstrating its capacity to treat metabolic diseases, we show that an AAV-delivered Fn-REDLIP system achieved optogenetic control of insulin expression to effectively lower blood glucose levels in type 1 diabetes model mice and control an anti-obesity therapeutic protein (thymic stromal lymphopoietin, TSLP) to reduce body weight in obesity model mice. REDLIP is a compact and sensitive optogenetic tool for reversible and non-invasive control that can facilitate basic biological and biomedical research.
6.

OptoAssay-Light-controlled dynamic bioassay using optogenetic switches.

red PhyB/PIF6 in vitro Extracellular optogenetics
Sci Adv, 25 Sep 2024 DOI: 10.1126/sciadv.adp0911 Link to full text
Abstract: Circumventing the limitations of current bioassays, we introduce a light-controlled assay, OptoAssay, toward wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bidirectional movement of assay components, only by changing the wavelength of light. Demonstrating exceptional versatility, the OptoAssay showcases its efficacy on various substrates, delivering a dynamic bioassay format. The applicability of the OptoAssay is successfully demonstrated by the calibration of a competitive model assay, resulting in a superior limit of detection of 8 pg ml-1, which is beyond those of conventional ELISA tests. In the future, combined with smartphones, OptoAssays could obviate the need for external flow control systems such as pumps or valves and signal readout devices, enabling on-site analysis in resource-limited settings.
7.

Optogenetic Tools for Regulating RNA Metabolism and Functions.

blue red Cryptochromes LOV domains Phytochromes Review
Chembiochem, 24 Sep 2024 DOI: 10.1002/cbic.202400615 Link to full text
Abstract: RNA molecules play a vital role in linking genetic information with various cellular processes. In recent years, a variety of optogenetic tools have been engineered for regulating cellular RNA metabolism and functions. These highly desirable tools can offer non-intrusive control with spatial precision, remote operation, and biocompatibility. Here, we would like to review these currently available approaches that can regulate RNAs with light: from non-genetically encodable chemically modified oligonucleotides to genetically encoded RNA aptamers that recognize photosensitive small-molecule or protein ligands. Some key applications of these optogenetic tools will also be highlighted to illustrate how they have been used for regulating all aspects of the RNA life cycle: from RNA synthesis, maturation, modification, and translation to their degradation, localization, and phase separation control. Some current challenges and potential practical utilizations of these RNA optogenetic tools will also be discussed.
8.

Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology.

blue red bPAC (BlaC) DmPGC YtvA E. coli HEK293T Transgene expression
Biol Chem, 23 Sep 2024 DOI: 10.1515/hsz-2023-0205 Link to full text
Abstract: The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
9.

Local optogenetic NMYII activation within the zebrafish neural rod results in long-range, asymmetric force propagation.

red PhyB/PIF6 zebrafish in vivo Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 19 Sep 2024 DOI: 10.1101/2024.09.19.613826 Link to full text
Abstract: How do cellular forces propagate through tissue to allow large-scale morphogenetic events? To investigate this question, we use an in vivo optogenetic approach to reversibly manipulate actomyosin contractility at depth within the developing zebrafish neural rod. Contractility was induced along the lateral cortices of a small patch of developing neural epithelial progenitor cells, resulting in a shortening of these cells along their mediolateral axis. Imaging the immediate response of surrounding tissue uncovered a long-range, tangential, and elastic tissue deformation along the anterior-posterior axis. Unexpectedly, this was highly asymmetric, propagating in either the anterior or the posterior direction in response to local gradients in optogenetic activation. The degree of epithelialisation did not have a significant impact on the extent of force propagation via lateral cortices. We also uncovered a dynamic oscillatory expansion and contraction of the tissue along the anterior-posterior axis, with wavelength matching rhombomere length. Together, this study suggests dynamic and wave-like propagation of force between rhombomeres along the anterior-posterior axis. It also suggests that cell generated forces are actively propagated over long distances within the tissue, and that local anisotropies in tissue organisation and contractility may be sufficient to drive directional force propagation.
10.

Plant Phytochrome Interactions Decode Light and Temperature Signals.

red Phytochromes A. thaliana leaf protoplasts CHO-K1 in vitro Background
Plant Cell, 11 Sep 2024 DOI: 10.1093/plcell/koae249 Link to full text
Abstract: Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.
11.

Integrating bioprinting and optogenetic technologies for precision plant tissue engineering.

blue green red Cobalamin-binding domains LOV domains Phytochromes Review
Curr Opin Biotechnol, 28 Aug 2024 DOI: 10.1016/j.copbio.2024.103193 Link to full text
Abstract: Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
12.

Cryo-EM structures of a bathy phytochrome histidine kinase reveal a unique light-dependent activation mechanism.

red Phytochromes Background
Structure, 23 Aug 2024 DOI: 10.1016/j.str.2024.08.008 Link to full text
Abstract: Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein. Here, we present cryoelectron microscopy (cryo-EM) structures of the phytochrome from Pseudomonas aeruginosa (PaBphP) in its resting (Pfr) and photoactivated (Pr) state. The kinase-active Pr state has an asymmetric, dimeric structure, whereas the kinase-inactive Pfr state opens up. This behavior is different from other known phytochromes and we explain it with the unusually short connection between the photosensory and output modules. Multiple sequence alignment of this region suggests evolutionary optimization for different modes of signal transduction in sensor proteins. The results establish a new mechanism for light-sensing by phytochrome histidine kinases and provide input for the design of optogenetic phytochrome variants.
13.

Programming mammalian cell behaviors by physical cues.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 22 Aug 2024 DOI: 10.1016/j.tibtech.2024.07.014 Link to full text
Abstract: In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
14.

Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases.

red PhyB/PIF6 F-11 HEK293T/17 NIH/3T3 Signaling cascade control
Elife, 20 Aug 2024 DOI: 10.7554/elife.91012.3 Link to full text
Abstract: Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
15.

Induction of bacterial expression at the mRNA level by light.

blue red DrBphP PAL E. coli Transgene expression Multichromatic
Nucleic Acids Res, 10 Aug 2024 DOI: 10.1093/nar/gkae678 Link to full text
Abstract: Vital organismal processes, including development, differentiation and adaptation, involve altered gene expression. Although expression is frequently controlled at the transcriptional stage, various regulation mechanisms operate at downstream levels. Here, we leverage the photoreceptor NmPAL to optogenetically induce RNA refolding and the translation of bacterial mRNAs. Blue-light-triggered NmPAL binding disrupts a cis-repressed mRNA state, thereby relieves obstruction of translation initiation, and upregulates gene expression. Iterative probing and optimization of the circuit, dubbed riboptoregulator, enhanced induction to 30-fold. Given action at the mRNA level, the riboptoregulator can differentially regulate individual structural genes within polycistronic operons. Moreover, it is orthogonal to and can be wed with other gene-regulatory circuits for nuanced and more stringent gene-expression control. We thus advance the pAurora2 circuit that combines transcriptional and translational mechanisms to optogenetically increase bacterial gene expression by >1000-fold. The riboptoregulator strategy stands to upgrade numerous regulatory circuits and widely applies to expression control in microbial biotechnology, synthetic biology and materials science.
16.

Optogenetics in pancreatic islets: Actuators and effects.

blue green near-infrared red BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Diabetes, 8 Jul 2024 DOI: 10.2337/db23-1022 Link to full text
Abstract: The Islets of Langerhans reside within the endocrine pancreas as highly vascularised micro-organs that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include calcium (Ca2+) waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Very recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbing islet function with near physiological spatio-temporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus (DM).
17.

Leveraging the histidine kinase-phosphatase duality to sculpt two-component signaling.

blue red DmBphP DrBphP PAL E. coli Transgene expression Multichromatic
Nat Commun, 10 Jun 2024 DOI: 10.1038/s41467-024-49251-8 Link to full text
Abstract: Bacteria must constantly probe their environment for rapid adaptation, a crucial need most frequently served by two-component systems (TCS). As one component, sensor histidine kinases (SHK) control the phosphorylation of the second component, the response regulator (RR). Downstream responses hinge on RR phosphorylation and can be highly stringent, acute, and sensitive because SHKs commonly exert both kinase and phosphatase activity. With a bacteriophytochrome TCS as a paradigm, we here interrogate how this catalytic duality underlies signal responses. Derivative systems exhibit tenfold higher red-light sensitivity, owing to an altered kinase-phosphatase balance. Modifications of the linker intervening the SHK sensor and catalytic entities likewise tilt this balance and provide TCSs with inverted output that increases under red light. These TCSs expand synthetic biology and showcase how deliberate perturbations of the kinase-phosphatase duality unlock altered signal-response regimes. Arguably, these aspects equally pertain to the engineering and the natural evolution of TCSs.
18.

Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals.

blue red CRY2/CIB1 PhyA/FHL PhyA/FHY1 HEK293T mouse in vivo Transgene expression Nucleic acid editing Multichromatic
Nat Commun, 8 Jun 2024 DOI: 10.1038/s41467-024-49254-5 Link to full text
Abstract: Synthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications. Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively. Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo. Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications.
19.

Optogenetic therapeutic strategies for diabetes mellitus.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
J Diabetes, Jun 2024 DOI: 10.1111/1753-0407.13557 Link to full text
Abstract: Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
20.

Nano-optogenetics for Disease Therapies.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
ACS Nano, 20 May 2024 DOI: 10.1021/acsnano.4c00698 Link to full text
Abstract: Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
21.

Ultrafast Primary Dynamics and Isomerization Mechanism of a Far-Red Sensing Cyanobacteriochrome.

red Phytochromes Background
J Phys Chem Lett, 8 May 2024 DOI: 10.1021/acs.jpclett.4c00468 Link to full text
Abstract: Far-red cyanobacteriochromes (CBCRs) are bilin-based photosensory proteins that promise to be novel optical agents in optogenetics and deep tissue imaging. Recent structural studies of a far-red CBCR 2551g3 have revealed a unique all-Z,syn chromophore conformation in the far-red-absorbing Pfr state. Understanding the photoswitching mechanism through bilin photoisomerization is important for developing novel biomedical applications. Here, we employ femtosecond spectroscopy and site-directed mutagenesis to systematically characterize the dynamics of wild-type 2551g3 and four critical mutants in the 15Z Pfr state. We captured local relaxations in several picoseconds and isomerization dynamics in hundreds of picoseconds. Most mutants exhibited faster local relaxation, while their twisting dynamics and photoproducts depend on specific protein-chromophore interactions around the D-ring and C-ring. These results collectively reveal a unique dynamic pattern of excited-state evolution arising from a relatively rigid protein environment, thereby elucidating the molecular mechanism of Pfr-state photoisomerization in far-red CBCRs.
22.

Red-Light-Induced Genetic System for Control of Extracellular Electron Transfer.

blue red iLight YtvA E. coli S. oneidensis Transgene expression Multichromatic
ACS Synth Biol, 2 May 2024 DOI: 10.1021/acssynbio.3c00684 Link to full text
Abstract: Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.
23.

An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts.

red PhyB/PIF3 S. cerevisiae Nucleic acid editing
ACS Synth Biol, 10 Apr 2024 DOI: 10.1021/acssynbio.3c00476 Link to full text
Abstract: Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.
24.

Antidiabetic Close Loop Based on Wearable DNA-Hydrogel Glucometer and Implantable Optogenetic Cells.

red BphS HEK293 mouse in vivo Transgene expression
JACS Au, 6 Apr 2024 DOI: 10.1021/jacsau.4c00033 Link to full text
Abstract: Diabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration. To overcome these challenges, we present a novel model of antidiabetic management based on printable metallo-nucleotide hydrogels and optogenetic engineering. The conductive hydrogels were self-assembled by bioorthogonal chemistry using oligonucleotides, carbon nanotubes, and glucose oxidase, enabling continuous glucose monitoring in a broad range (0.5-40 mM). The optogenetically engineered cells were enabled glucose regulation in type I diabetic mice via a far-red light-induced transgenic expression of insulin with a month-long avidity. Combining with a microchip-integrated microneedle patch, a prototyped close-loop system was constructed. The glucose levels detected by the sensor were received and converted by a wireless controller to modulate far-infrared light, thereby achieving on-demand insulin expression for several weeks. This study sheds new light on developing next-generation diagnostic and therapy systems for personalized and digitalized precision medicine.
25.

Lighting the way: recent developments and applications in molecular optogenetics.

blue green red Cryptochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 29 Mar 2024 DOI: 10.1016/j.copbio.2024.103126 Link to full text
Abstract: Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.
Submit a new publication to our database