Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: color:"green"
Showing 1 - 25 of 151 results
1.

Technological advances in visualizing and rewiring microtubules during plant development.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
J Exp Bot, 16 Dec 2025 DOI: 10.1093/jxb/eraf284 Link to full text
Abstract: Microtubules are crucial regulators of plant development and are organized by a suite of microtubule-associated proteins (MAPs) that can rapidly remodel the array in response to various cues. This complexity has inspired countless studies into microtubule function from the subcellular to tissue scale, revealing an ever-increasing number of microtubule-dependent processes. Developing a comprehensive understanding of how local microtubule configuration, dynamicity, and remodeling drive developmental progression requires new approaches to capture and alter microtubule behavior. In this review, we will introduce the technological advancements we believe are poised to transform the study of microtubules in plant cells. In particular, we focus on (1) advanced imaging and analysis methods to quantify microtubule organization and behavior, and (2) novel tools to target specific microtubule populations in vivo. By showcasing innovative methodologies developed in non-plant systems, we hope to motivate their increased adoption and raise awareness of possible means of adapting them for studying microtubules in plants.
2.

Optogenetic tools for optimizing key signalling nodes in synthetic biology.

blue green near-infrared red BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Biotechnol Adv, 27 Nov 2025 DOI: 10.1016/j.biotechadv.2025.108770 Link to full text
Abstract: The modification of key enzymes for chemical production plays a crucial role in enhancing the yield of targeted products. However, manipulating key nodes in specific signalling pathways remains constrained by traditional gene overexpression or knockout strategies. Discovering and designing optogenetic tools enable us to regulate enzymatic activity or gene expression at key nodes in a spatiotemporal manner, rather than relying solely on chemical induction throughout production processes. In this review, we discuss the recent applications of optogenetic tools in the regulation of microbial metabolites, plant sciences and disease therapies. We categorize optogenetic tools into five classes based on their distinct applications. First, light-induced gene expression schedules can balance the trade-off between chemical production and cell growth phases. Second, light-triggered liquid-liquid phase separation (LLPS) modules provide opportunities to co-localize and condense key enzymes for enhancing catalytic efficiency. Third, light-induced subcellular localized photoreceptors enable the relocation of protein of interest across various subcellular compartments, allowing for the investigation of their dynamic regulatory processes. Fourth, light-regulated enzymes can dynamically regulate production of cyclic nucleotides or investigate endogenous components similar with conditional depletion or recovery function of protein of interest. Fifth, light-gated ion channels and pumps can be utilized to investigate dynamic ion signalling cascades in both animals and plants, or to boost ATP accumulation for enhancing biomass or bioproduct yields in microorganisms. Overall, this review aims to provide a comprehensive overview of optogenetic strategies that have the potential to advance both basic research and bioindustry within the field of synthetic biology.
3.

Capitalizing on mechanistic insights to power design of future-ready intracellular optogenetics tools.

blue cyan green near-infrared red BLUF domains CarH Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol Adv, 17 Nov 2025 DOI: 10.1016/j.biotechadv.2025.108761 Link to full text
Abstract: Intracellular optogenetics represents a rapidly advancing biotechnology that enables precise, reversible control of protein activity, signaling dynamics, and cellular behaviours using genetically encoded, light-responsive systems. Originally pioneered in neuroscience through channelrhodopsins to manipulate neuronal excitability, the field has since expanded into diverse intracellular applications with broad implications for medicine, agriculture, and biomanufacturing. Key to these advances are photoreceptors such as cryptochrome 2 (CRY2), light-oxygen-voltage (LOV) domains, and phytochromes, which undergo conformational changes upon illumination to trigger conditional protein-protein interactions, localization shifts, or phase transitions. Recent engineering breakthroughs-including the creation of red-light responsive systems such as MagRed that exploit endogenous biliverdin-have enhanced tissue penetration, minimized phototoxicity, and expanded applicability to complex biological systems. This review provides an overarching synthesis of the molecular principles underlying intracellular optogenetic actuators, including the photophysical basis of light-induced conformational changes, oligomerization, and signaling control. We highlight strategies that employ domain fusions, rational mutagenesis, and synthetic circuits to extend their utility across biological and industrial contexts. We also critically assess current limitations, such as chromophore dependence, light delivery challenges, and safety considerations, so as to frame realistic paths towards translation. Looking ahead, future opportunities include multi-colour and multiplexed systems, integration with high-throughput omics and artificial intelligence, and development of non-invasive modalities suited for in vivo and industrial applications. Intracellular optogenetics is thus emerging as a versatile platform technology, with the potential to reshape how we interrogate biology and engineer cells for therapeutic, agricultural, and environmental solutions.
4.

Two Decades of Optogenetic Tools: A Retrospective and a Look Ahead.

blue green red BLUF domains Cobalamin-binding domains Cryptochromes Dronpa LOV domains OCP2 Phytochromes Review
Adv Genet (Hoboken), 2 Sep 2025 DOI: 10.1002/ggn2.202500021 Link to full text
Abstract: Over the past two decades, optogenetics has evolved from a conceptual framework into a powerful and versatile technology for controlling cellular processes with light. Rooted in the discovery and characterization of natural photoreceptors, the field has advanced through the development of genetically encoded, light-sensitive proteins that enable precise spatiotemporal control of ion flux, intracellular signaling, gene expression, and protein interactions. This review traces key milestones in the emergence of optogenetics and highlights the development of major optogenetic tools. From the perspective of genetic tool innovation, the focus is on how these tools have been engineered and optimized for novel or enhanced functions, altered spectral properties, improved light sensitivity, subcellular targeting, and beyond. Their broadening applications are also explored across neuroscience, cardiovascular biology, hematology, plant sciences, and other emerging fields. In addition, current trends such as all-optical approaches, multiplexed control, and clinical translation, particularly in vision restoration are discussed. Finally, ongoing challenges are addressed and outline future directions in optogenetic tool development and in vivo applications, positioning optogenetics as a transformative platform for basic research and therapeutic advancement.
5.

Opto-CRISPR: new prospects for gene editing and regulation.

blue cyan green red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 17 Jul 2025 DOI: 10.1016/j.tibtech.2025.06.018 Link to full text
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR) technology represents a landmark advance in the field of gene editing. However, conventional CRISPR/Cas systems are limited by inadequate temporal and spatial control. In recent years, the development of optically controlled CRISPR (Opto-CRISPR) technology has offered a novel solution to this issue. As a combination of optogenetics and the CRISPR technology, the Opto-CRISPR technology enables dynamic space-time-specific gene editing and regulation in cells and organisms. In this review, we concisely introduce the basic principles of Opto-CRISPR, summarize its operational mechanisms, and discuss its applications and recent advances across various research fields. In addition, this review analyzes the limitations of Opto-CRISPR, aiming to provide a reference for the development of this emerging field.
6.

Advances in optogenetically engineered bacteria in disease diagnosis and therapy.

blue green red UV violet BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Biotechnol Adv, 15 Jul 2025 DOI: 10.1016/j.biotechadv.2025.108645 Link to full text
Abstract: Optogenetic bacterial technology is a cutting-edge approach that combines optogenetics and microbiology, offering a transformative strategy for disease diagnosis and therapy. This synergistic merger transcends the limitations of traditional diagnostic and therapeutic methodologies in a highly controllable, accurate and non-invasive manner. In this review, we introduce the optogenetic systems developed for microbial engineering and summarize fundamental in vitro design principles underlying light-responsive signal transduction in bacteria, as well as the optogenetic regulation of bacterial behaviors. We address multidisciplinary solutions to the challenges in the in vivo applications of light-controlled bacteria, such as limited light excitation, suboptimal delivery and targeting, and difficulties in signal tracking and management. Furthermore, we comprehensively highlight the recent progress in photo-responsive bacteria for disease diagnosis and therapy, and discuss how to accelerate translational applications.
7.

Empowering bacteria with light: Optogenetically engineered bacteria for light-controlled disease theranostics and regulation.

blue green near-infrared red BLUF domains Cryptochromes LOV domains Phytochromes Review
J Control Release, 29 Apr 2025 DOI: 10.1016/j.jconrel.2025.113787 Link to full text
Abstract: Bacterial therapy has emerged as a promising approach for disease treatment due to its environmental sensitivity, immunogenicity, and modifiability. However, the clinical application of engineered bacteria is limited by differences of expression levels in patients and possible off-targeting. Optogenetics, which combines optics and genetics, offers key advantages such as remote controllability, non-invasiveness, and precise spatiotemporal control. By utilizing optogenetic tools, the behavior of engineered bacteria can be finely regulated, enabling on-demand control of the dosage and location of their therapeutic products. In this review, we highlight the latest advancements in the optogenetic engineering of bacteria for light-controlled disease theranostics and therapeutic regulation. By constructing a three-dimensional analytical framework of “sense-produce-apply”, we begin by discussing the key components of bacterial optogenetic systems, categorizing them based on their photosensitive protein response to blue, green, and red light. Next, we introduce innovative light-producing tools that extend beyond traditional light sources. Then, special emphasis is placed on the biomedical applications of optogenetically engineered bacteria in treating diseases such as cancer, intestinal inflammation and systemic disease regulation. Finally, we address the challenges and future prospects of bacterial optogenetics, outlining potential directions for enhancing the safety and efficacy of light-controlled bacterial therapies. This review aims to provide insights and strategies for researchers working to advance the application of optogenetically engineered bacteria in drug delivery, precision medicine and therapeutic regulation.
8.

Insight into Optogenetics for Diabetes Management.

blue green red BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
ACS Synth Biol, 25 Apr 2025 DOI: 10.1021/acssynbio.4c00549 Link to full text
Abstract: Optogenetics is an interdisciplinary field wherein optical and genetic engineering methods are employed together to impart photounresponsive cells (usually of higher animals) the ability to respond to light through expression of light-sensitive proteins sourced generally from algae or bacteria. It enables precise spatiotemporal control of various cellular activities through light stimulation. Recently, emerging as a synthetic biology-based approach for diabetes management, optogenetics can provide user-control of hormonal secretion by photoactivation of a suitably modified cell. For around a decade, studies have been performed on the applicability of various light-sensitive proteins and their incorporation into pancreatic and nonpancreatic cells for photoinduced insulin secretion. Further, in vivo studies demonstrated amelioration of diabetes in mouse models through photoactivation of the implanted engineered cells. Here, we attempt to highlight the various optogenetic approaches explored in terms of influencing the insulin secretion pathway at different points in light of the natural insulin secretion pathway in pancreatic β cells. We also discuss how transgenic cells of both pancreatic as well as nonpancreatic origin are exploited for photoinduced secretion of insulin. Recent advances on integration of “smart” technologies for remote control of light irradiation and thereby insulin secretion from implanted engineered cells in preclinical models are also described. Additionally, the need for further comprehensive studies on irradiation parameters, red-shifted opsins, and host–cell interaction is stressed to realize the full potential of optogenetics as a clinically applicable modality providing user-controlled “on demand” hormonal secretion for better management of diabetes.
9.

Protein design accelerates the development and application of optogenetic tools.

blue cyan green near-infrared red UV BlrP1b Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains PAC (BlaC)TtCBD Phytochromes UV receptors Review
Comput Struct Biotechnol J, 21 Feb 2025 DOI: 10.1016/j.csbj.2025.02.014 Link to full text
Abstract: Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
10.

A dual light-controlled co-culture system enables the regulation of population composition.

blue green CcaS/CcaR YtvA E. coli Transgene expression Multichromatic
Synth Syst Biotechnol, 19 Feb 2025 DOI: 10.1016/j.synbio.2025.02.012 Link to full text
Abstract: With the development of metabolic engineering, increasing requirements for efficient microbial biosynthesis call for establishment of multi-strain co-culture system. Dynamic regulation of population ratios is crucial for optimizing bioproduction performance. Optogenetic systems with high universality and flexibility have the potential to realize dynamic control of population proportion. In this study, we utilized an optimized chromatic acclimation sensor/regulator (CcaS/R) system and a blue light-activated YF1-FixJ-PhlF system as induction modules. A pair of orthogonal quorum sensing systems and a toxin-antitoxin system were employed as communication module and effector module, respectively. By integrating these modules, we developed a dual light-controlled co-culture system that enables dynamic regulation of population ratios. This co-culture system provides a universal toolkit for applications in metabolic engineering and synthetic biology.
11.

Lighting up yeast: overview of optogenetics in yeast and their applications to yeast biotechnology.

blue green red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
FEMS Yeast Res, 30 Jan 2025 DOI: 10.1093/femsyr/foaf064 Link to full text
Abstract: Optogenetics is an empowering technology that uses light-responsive proteins to control biological processes. Because of its genetic tractability, abundance of genetic tools, and robust culturing conditions, Saccharomyces cerevisiae has served for many years as an ideal platform in which to study, develop, and apply a wide range of optogenetic systems. In many instances, yeast has been used as a steppingstone in which to characterize and optimize optogenetic tools to later be deployed in higher eukaryotes. More recently, however, optogenetic tools have been developed and deployed in yeast specifically for biotechnological applications, including in nonconventional yeasts. In this review, we summarize various optogenetic systems responding to different wavelengths of light that have been demonstrated in diverse yeast species. We then describe various applications of these optogenetic tools in yeast, particularly in metabolic engineering and recombinant protein production. Finally, we discuss emerging applications in yeast cybergenetics-the interfacing of yeast and computers for closed-loop controls of yeast bioprocesses-and the potential impact of optogenetics in other future biotechnological applications.
12.

Optogenetic control of gene expression in the cyanobacterium Synechococcus sp. PCC 7002.

blue green CcaS/CcaR YtvA Synechococcus Transgene expression
Front Bioeng Biotechnol, 17 Jan 2025 DOI: 10.3389/fbioe.2024.1529022 Link to full text
Abstract: Photosynthetic cyanobacteria can be utilised in biotechnology as environmentally sustainable cell factories to convert CO2 into a diverse range of biochemicals. However, a lack of molecular tools available for precise and dynamic control of gene expression hinders metabolic engineering and contributes to low product titres. Optogenetic tools enable light-regulated control of gene expression with high tunability and reversibility. To date, their application in cyanobacteria is limited and transferability between species remains unclear. In this study, we expressed the blue light-repressible YF1/FixJ and the green/red light-responsive CcaS/CcaR systems in Synechococcus sp. PCC 7002 and characterised their performance using GFP fluorescence assays and qRT-PCR. The YF1/FixJ system of non-cyanobacterial origin showed poor performance with a maximum dynamic range of 1.5-fold despite several steps to improve this. By contrast, the CcaS/CcaR system originating from the cyanobacterium Synechocystis sp. PCC 6803 responded well to light wavelengths and intensities, with a 6-fold increased protein fluorescence output observed after 30 min of green light. Monitoring GFP transcript levels allowed us to quantify the kinetics of transcriptional activation and deactivation and to test the effect of both multiple green/red and light/dark cycles on system performance. Finally, we increased CcaS/CcaR system activity under green light through targeted genetic modifications to the pCpcG2 output promoter. This study provides a detailed characterisation of the behaviour of the CcaS/CcaR system in Synechococcus sp. PCC 7002, as well as underlining the complexity of transferring optogenetic tools across species.
13.

In situ production and precise release of bioactive GM-CSF and siRNA by engineered bacteria for macrophage reprogramming in cancer immunotherapy.

green CcaS/CcaR E. coli Transgene expression
Biomaterials, 19 Dec 2024 DOI: 10.1016/j.biomaterials.2024.123037 Link to full text
Abstract: In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed. One strain was engineered to produce and secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) to promote M2-like TAMs repolarization to M1-like TAMs, while the other strain was designed to secrete small interfering RNA (siRNA) targeting signal regulatory protein α (SIRPα). The two strains can continuously and efficiently produce bioactive therapeutic agents in situ, exerting a sustained and synergistic therapeutic effect in TAMs to inhibit tumor growth. To enhance treatment efficacy, optogenetic strategy was implemented to effectively control the production of GM-CSF, and outer membrane vesicles (OMVs) produced by engineered bacteria were utilized to protect the siRNA from degradation in the external environment. The experimental results indicated that the bacterial therapy platform could continuously produce and release bioactive GM-CSF and SIRPα siRNA, exhibiting significant therapeutic activity. In vivo experiments further demonstrated that this platform showed more sustained and stable therapeutic effects compared to conventional drug therapies. Additionally, the combination of these two engineered strains yielded the highest ratio of M1/M2 TAMs (0.80) and the lowest ratio of F4/80+SIRPα+TAMs (3.46 %) than single strain therapy. Our study expanded the potential of engineered bacteria as pharmaceutical factories for in vivo therapeutic applications.
14.

Illuminating the future of food microbial control: From optical tools to Optogenetic tools.

blue green near-infrared red violet Cryptochromes LOV domains Phytochromes Review
Food Chem, 13 Dec 2024 DOI: 10.1016/j.foodchem.2024.142474 Link to full text
Abstract: Light as an environmental signal can effectively regulate various biological processes in microbial systems. Optical and optogenetic tools are able to utilize light for precise control methods with minimal interference. Recently, research on these tools has extended to the field of microbiology. Distinguishing from existing reviews, this review narrows the scope of application into food sector, focusing on advances in optical and optogenetic tools for microbial control, including optical tools targeting pathogenic or probiotic bacteria for non-thermal sterilization, antimicrobial photodynamic therapy, or photobiomodulation, combined with nanomaterials as photosensors for food analysis. As well as using optogenetic tools for more convenient and precise control in food production processes, covering reversible induction, metabolic flux regulation, biofilm formation, and inhibition. These tools offer new solutions to goals that cannot be achieved by traditional methods, and they are still maturing to explore other uses in the food field.
15.

Dynamic heterogeneity in an E. coli stress response regulon mediates gene activation and antimicrobial peptide tolerance.

green CcaS/CcaR E. coli Transgene expression Endogenous gene expression Control of cell-cell / cell-material interactions
bioRxiv, 2 Dec 2024 DOI: 10.1101/2024.11.27.625634 Link to full text
Abstract: The bacterial stress response is an intricately regulated system that plays a critical role in cellular resistance to drug treatment. The complexity of this response is further complicated by cell-to-cell heterogeneity in the expression of bacterial stress response genes. These genes are often organized into networks comprising one or more transcriptional regulators that control expression of a suite of downstream genes. While the expression heterogeneity of many of these upstream regulators has been characterized, the way in which this variability affects the larger downstream stress response remains hard to predict, prompting two key questions. First, how does heterogeneity and expression noise in stress response regulators propagate to the diverse downstream genes in their regulons. Second, when expression levels vary, how do multiple downstream genes act together to protect cells from stress. To address these questions, we focus on the transcription factor PhoP, a critical virulence regulator which coordinates pathogenicity in several gram-negative species. We use optogenetic stimulation to precisely control PhoP expression levels and examine how variations in PhoP affect the downstream activation of genes in the PhoP regulon. We find that these downstream genes exhibit differences both in mean expression level and sensitivity to increasing levels of PhoP. These response functions can also vary between individual cells, increasing heterogeneity in the population. We tie these variations to cell survival when bacteria are exposed to a clinically-relevant antimicrobial peptide, showing that high expression of the PhoP-regulon gene pmrD provides a protective effect against Polymyxin B. Overall, we demonstrate that even subtle heterogeneity in expression of a stress response regulator can have clear consequences for enabling bacteria to survive stress.
16.

Light inducible gene expression system for Streptomyces.

green TtCBD Streptomyces Transgene expression
Sci Rep, 28 Oct 2024 DOI: 10.1038/s41598-024-76860-6 Link to full text
Abstract: The LitR/CarH family comprises adenosyl B12-based photosensory transcriptional regulators that control light-inducible carotenoid production in nonphototrophic bacteria. In this study, we established a blue-green light-inducible hyperexpression system using LitR and its partner ECF-type sigma factor LitS in streptomycin-producing Streptomyces griseus NBRC 13350. The constructed multiple-copy number plasmid, pLit19, carried five genetic elements: pIJ101rep, the thiostrepton resistance gene, litR, litS, and σLitS-recognized light-inducible crtE promoter. Streptomyces griseus transformants harboring pLit19 exhibited a light-dependent hyper-production of intracellular reporter enzymes including catechol-2,3-dioxygenase and β-glucuronidase, extracellular secreted enzymes including laccase and transglutaminase, and secondary metabolites including melanin, flaviolin, and indigoidine. Cephamycin-producing Streptomyces sp. NBRC 13304, carrying an entire actinorhodin gene cluster, exhibited light-dependent actinorhodin production after the introduction of the pLit19 shuttle-type plasmid with the pathway-specific activator actII-ORF4. Insertion of sti fragment derived from Streptomyces phaeochromogenes pJV1 plasmid into pLit19 increased its light sensitivity, allowing gene expression under weak light irradiation. The two constructed Escherichia coli-Streptomyces shuttle-type pLit19 plasmids were found to have abilities similar to those of pLit19. We successfully established an optogenetically controlled hyperproduction system for S. griseus NBRC 13350 and Streptomyces sp. NBRC 13304.
17.

Three-Color Protein Photolithography with Green, Red, and Far-Red Light.

green TtCBD E. coli HeLa in vitro Control of cell-cell / cell-material interactions
Small, 18 Oct 2024 DOI: 10.1002/smll.202405687 Link to full text
Abstract: Protein photolithography is an invaluable tool for generating protein microchips and regulating interactions between cells and materials. However, the absence of light-responsive molecules that allow for the copatterning of multiple functional proteins with biocompatible visible light poses a significant challenge. Here, a new approach for photopatterning three distinct proteins on a single surface by using green, red, and far-red light is reported. The cofactor of the green light-sensitive protein CarH is engineered such that it also becomes sensitive to red and far-red light. These new cofactors are shown to be compatible with two CarH-based optogenetic tools to regulate bacterial cell-cell adhesions and gene expression in mammalian cells with red and far-red light. Further, by incorporating different CarH variants with varying light sensitivities in layer-by-layer (LbL) multiprotein films, specific layers within the films, along with other protein layers on top are precisely removed by using different colors of light, all with high spatiotemporal accuracy. Notably, with these three distinct colors of visible light, it is possible to incorporate diverse proteins under mild conditions in LbL films based on the reliable interaction between Ni2+- nitrilotriacetic acid (NTA) groups and polyhistidine-tags (His-tags)on the proteins and their subsequent photopatterning. This approach has potential applications spanning biofabrication, material engineering, and biotechnology.
18.

Light-driven synchronization of optogenetic clocks.

green CcaS/CcaR E. coli Cell cycle control Transgene expression
Elife, 15 Oct 2024 DOI: 10.7554/elife.97754 Link to full text
Abstract: Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here, we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in E. coli, with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system's response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.
19.

Red-Shifting B12-Dependent Photoreceptor Protein via Optical Coupling for Inducible Living Materials.

green TtCBD in vitro Control of cell-cell / cell-material interactions
Angew Chem Int Ed Engl, 6 Sep 2024 DOI: 10.1002/anie.202411105 Link to full text
Abstract: Cobalamin (B12)-dependent photoreceptors are gaining traction in materials synthetic biology, especially for optically controlling cell-to-cell adhesion in living materials. However, these proteins are mostly responsive to green light, limiting their deep-tissue applications. Here, we present a general strategy for shifting photoresponse of B12-dependent photoreceptor CarHC from green to red/far-red light via optical coupling. Using thiol-maleimide click chemistry, we labeled cysteine-containing CarHC mutants with SulfoCyanine5 (Cy5), a red light-capturing fluorophore. The resulting photoreceptors not only retained the ability to tetramerize in the presence of adenosylcobalamin (AdoB12), but also gained sensitivity to red light; labeled tetramers disassembled on red light exposure. Using genetically encoded click chemistry, we assembled the red-shifted proteins into hydrogels that degraded rapidly in response to red light. Furthermore, Saccharomyces cerevisiae cells were genetically engineered to display CarHC variants, which, alongside in situ Cy5 labeling, led to living materials that could assemble and disassemble in response to AdoB12 and red light, respectively. These results illustrate the CarHC spectrally tuned by optical coupling as a versatile motif for dynamically controlling cell-to-cell interactions within engineered living materials. Given their prevalence and ecological diversity in nature, this spectral tuning method will expand the use of B12-dependent photoreceptors in optogenetics and living materials.
20.

Integrating bioprinting and optogenetic technologies for precision plant tissue engineering.

blue green red Cobalamin-binding domains LOV domains Phytochromes Review
Curr Opin Biotechnol, 28 Aug 2024 DOI: 10.1016/j.copbio.2024.103193 Link to full text
Abstract: Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
21.

Programming mammalian cell behaviors by physical cues.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 22 Aug 2024 DOI: 10.1016/j.tibtech.2024.07.014 Link to full text
Abstract: In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
22.

Sequential delivery of photosensitizers and checkpoint inhibitors by engineered bacteria for enhanced cancer photodynamic immunotherapy.

green CcaS/CcaR E. coli Transgene expression
Biotechnol Bioeng, 13 Aug 2024 DOI: 10.1002/bit.28829 Link to full text
Abstract: Engineered bacteria-based cancer therapy has increasingly been considered to be a promising therapeutic strategy due to the development of synthetic biology. Wherein, engineering bacteria-mediated photodynamic therapy (PDT)-immunotherapy shows greater advantages and potential in treatment efficiency than monotherapy. However, the unsustainable regeneration of photosensitizers (PSs) and weak immune responses limit the therapeutic efficiency. Herein, we developed an engineered bacteria-based delivery system for sequential delivery of PSs and checkpoint inhibitors in cancer PDT-immunotherapy. The biosynthetic pathway of 5-aminolevulinic acid (5-ALA) was introduced into Escherichia coli, yielding a supernatant concentration of 172.19 mg/L after 10 h of growth. And another strain was endowed with the light-controllable releasement of anti-programmed cell death-ligand 1 nanobodies (anti-PD-L1). This system exhibited a collaborative effect, where PDT initiated tumor cell death and the released tumor cell fragments stimulated immunity, followed by the elimination of residual tumor cells. The tumor inhibition rate reached 74.97%, and the portion of activated T cells and inflammatory cytokines were reinforced. The results demonstrated that the engineered bacteria-based collaborative system could sequentially deliver therapeutic substance and checkpoint inhibitors, and achieve good therapeutic therapy. This paper will provide a new perspective for the cancer PDT-immunotherapy.
23.

Optogenetics in pancreatic islets: Actuators and effects.

blue green near-infrared red BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Diabetes, 8 Jul 2024 DOI: 10.2337/db23-1022 Link to full text
Abstract: The Islets of Langerhans reside within the endocrine pancreas as highly vascularised micro-organs that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include calcium (Ca2+) waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Very recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbing islet function with near physiological spatio-temporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus (DM).
24.

Optogenetic therapeutic strategies for diabetes mellitus.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
J Diabetes, Jun 2024 DOI: 10.1111/1753-0407.13557 Link to full text
Abstract: Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
25.

Photoresponsive Hydrogels for Tissue Engineering.

blue cyan green Cobalamin-binding domains Fluorescent proteins LOV domains Review
ACS Biomater Sci Eng, 30 May 2024 DOI: 10.1021/acsbiomaterials.4c00314 Link to full text
Abstract: Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
Submit a new publication to our database