Synthetic Frizzled agonist and LRP antagonist for high-efficiency Wnt/β-catenin signaling manipulation in organoid cultures and in vivo.
Abstract:
Wnt/β-catenin signaling and its dysregulation play critical roles in the fate determination of stem cells and the pathology of various diseases. However, the application of translated Wnt ligand in regenerative medicine is hampered by its hydrophobicity and cross-reactivity with Frizzled (FZD) receptors. Here, we generate an engineered water-soluble, FZD subtype-specific agonist, RRP-pbFn, for high-efficiency Wnt/β-catenin signaling activation. In the absence of direct binding to LRP5/6, RRP-pbFn stimulates Wnt/β-catenin signaling more potently than surrogate Wnt. RRP-pbFn supports the growth of a variety of mouse and human organoids, and induces the expansion of liver and intestine progenitors in vivo. Meanwhile, we develop a synthetic LRP antagonist, RRP-Dkk1c, which exhibits heightened effectiveness in attenuating Wnt/β-catenin signaling activity compared to Dkk1, thereby abolishing the formation of CT26-derived colon cancer xenograft in vivo. Together, these two paired Wnt/β-catenin signaling manipulators hold great promise for biomedical research and potential therapeutics.