Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Zhenqiang Deng"
Showing 1 - 2 of 2 results
1.

Optogenetic-Controlled iPSC-Based Vaccines for Prophylactic and Therapeutic Tumor Suppression in Mice.

red FnBphP PnBphP isolated MEFs mouse IPSCs Transgene expression
Adv Sci (Weinh), 6 Jul 2025 DOI: 10.1002/advs.202416115 Link to full text
Abstract: Induced pluripotent stem cells (iPSCs) share similar cellular features and various antigens profiles with cancer cells. Leveraging these characteristics, iPSCs hold great promise for developing wide-spectrum vaccines against cancers. In practice, iPSCs are typically combined with immune adjuvants to enhance antitumor immune responses; however, traditional adjuvants lack controllability and can induce systemic toxicity, which has limited their broad application. Here, a red/far-red light-controlled iPSC-based vaccine (RIVA) based on the chimeric photosensory protein FnBphP and its interaction partner LDB3 is developed; RIVA preserves the intrinsic tumor antigens of iPSCs and enables optogenetic control of an immune adjuvant's (IFN-β) expression under red light illumination. Experiments in multiple mouse tumor models demonstrate that RIVA inhibits tumor growth and improves animal survival in prophylactic and therapeutic settings, including against pulmonary metastatic 4T1 breast cancer. RIVA efficiently stimulates dendritic cell maturation, eliciting innate immune activation effects through NK cells and elicit adaptive immune anti-tumor responses through CD4+ and CD8+ T cells. Moreover, RIVA protects animals against tumor re-challenge by inducing strong immunological memory, with minimal systemic toxicity. This study demonstrates RIVA as an effective optogenetic approach for developing safe multi-antigen vaccines for the prevention and treatment of cancer.
2.

Engineered bacteria for near-infrared light-inducible expression of cancer therapeutics.

red iLight S. enteritidis Transgene expression
Nat Cancer, 17 Mar 2025 DOI: 10.1038/s43018-025-00932-3 Link to full text
Abstract: Bacteria-based therapies hold great promise for cancer treatment due to their selective tumor colonization and proliferation. However, clinical application is hindered by the need for safe, precise control systems to regulate local therapeutic payload expression and release. Here we developed a near-infrared (NIR) light-mediated PadC-based photoswitch (NETMAP) system based on a chimeric phytochrome-activated diguanylyl cyclase (PadC) and a cyclic diguanylate monophosphate-dependent transcriptional activator (MrkH). The NETMAP-engineered bacteria exhibited antitumor performance in mouse tumor models with different levels of immunogenicity. Specifically, in immunogenic lymphoma tumors, NIR-induced PD-L1 and CTLA-4 nanobodies enhanced the activation of adaptive immunity. In low-immunogenic tumors-including mouse-derived colon cancer models, an orthotopic human breast cancer cell line-derived xenograft model and a colorectal cancer patient-derived xenograft model-NIR-induced azurin and cytolysin A predominantly led to tumor inhibition. Our study identifies an NIR light-mediated therapeutic platform for engineered bacteria-based therapies with customizable outputs and precise dosage control.
Submit a new publication to our database