Qr: author:"Victoria Moreno-Manzano"
Showing 1 - 2 of 2 results
1.
Stimulation of corticospinal neurons by optogenetic cAMP inductions promotes motor recovery after spinal cord injury in female rats via raphespinal tract modulation.
-
Martínez-Rojas, B
-
Martín-Pérez, S
-
Giraldo, E
-
Lopez-Mocholi, E
-
Alastrue, A
-
Andrade-Talavera, Y
-
Prius-Mengual, J
-
Paniagua, G
-
Pedraza, M
-
Hingorani, S
-
Rost, BR
-
Schmitz, D
-
Llansola, M
-
Felipo, V
-
Rodríguez-Moreno, A
-
Moreno-Manzano, V
Abstract:
After spinal cord injury (SCI), cyclic adenosine monophosphate (cAMP) levels drop in the spinal cord, cortex and brainstem, unlike in regenerating peripheral neurons. To address SCI recovery, we expressed photoactivatable adenylate cyclase (bPAC) in corticospinal neurons of female rats with dorsal hemisection for on-demand cAMP inductions. bPAC stimulation restored passive and firing properties of corticospinal neurons, promoted early and sustained locomotor recovery and increased corticospinal tract plasticity. Additionally, bPAC enhanced sparing of lumbar-projecting brainstem neurons after SCI, accompanied by activation of cAMP signaling in the raphe-reticular formation and increased excitatory/inhibitory neurotransmitter balance. Accordingly, augmented density of serotonergic tracts was found caudal to the injury in bPAC rats, correlating with enhanced functional performance. Serotonergic implication in motor recovery was further evidenced by selective depletion, resulting in the abrogation of bPAC-mediated recovery. Overall, our findings underscore that cAMP induction in corticospinal neurons enhances locomotion after SCI, through a cortical rerouting pathway via the serotonergic descending tract.
2.
Optogenetic Stimulation Array for Confocal Microscopy Fast Transient Monitoring.
Abstract:
Optogenetics is an emerging discipline with multiple applications in neuroscience, allowing to study neuronal pathways or serving for therapeutic applications such as in the treatment of anxiety disorder, autism spectrum disorders (ASDs), or Parkinson's disease. More recently optogenetics is opening its way also to stem cell-based therapeutic applications for neuronal regeneration after stroke or spinal cord injury. The results of optogenetic stimulation are usually evaluated by immunofluorescence or flow cytometry, and the observation of transient responses after stimulation, as in cardiac electrophysiology studies, by optical microscopy. However, certain phenomena, such as the ultra-fast calcium waves acquisition upon simultaneous optogenetics, are beyond the scope of current instrumentation, since they require higher image resolution in real-time, employing for instance time-lapse confocal microscopy. Therefore, in this work, an optogenetic stimulation matrix controllable from a graphical user interface has been developed for its use with a standard 24-well plate for an inverted confocal microscope use and validated by using a photoactivable adenyl cyclase (bPAC) overexpressed in rat fetal cortical neurons and the consequent calcium waves propagation upon 100 ms pulsed blue light stimulation.