1.
Optogenetic tools for manipulation of cyclic nucleotides, functionally coupled to CNG-channels.
-
Henß, T
-
Nagpal, J
-
Gao, S
-
Scheib, U
-
Pieragnolo, A
-
Hirschhäuser, A
-
Schneider-Warme, F
-
Hegemann, P
-
Nagel, G
-
Gottschalk, A
Abstract:
The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers that regulate numerous biological processes. Malfunctional cNMP signalling is linked to multiple diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in C. elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarising rhodopsins, yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarisers based on K+ -currents.
2.
The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
Abstract:
Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.