Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 7 of 7 results
1.

LILAC: enhanced actin imaging with an optogenetic Lifeact.

blue AsLOV2 Schneider 2
Nat Methods, 30 Jan 2023 DOI: 10.1038/s41592-022-01761-3 Link to full text
Abstract: Lifeact is a popular peptide-based label of actin filaments in live cells. We have designed an improved Lifeact variant, LILAC, that binds to actin in light using the LOV2 protein. Light control allows the user to modulate actin labeling, enabling image analysis that leverages modulation for an enhanced view of F-actin dynamics in cells. Furthermore, the tool reduces actin perturbations and cell sickness caused by Lifeact overexpression.
2.

Investigations of human myosin VI targeting using optogenetically controlled cargo loading.

blue AsLOV2 HeLa in vitro Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Proc Natl Acad Sci USA, 13 Feb 2017 DOI: 10.1073/pnas.1614716114 Link to full text
Abstract: Myosins play countless critical roles in the cell, each requiring it to be activated at a specific location and time. To control myosin VI with this specificity, we created an optogenetic tool for activating myosin VI by fusing the light-sensitive Avena sativa phototropin1 LOV2 domain to a peptide from Dab2 (LOVDab), a myosin VI cargo protein. Our approach harnesses the native targeting and activation mechanism of myosin VI, allowing direct inferences on myosin VI function. LOVDab robustly recruits human full-length myosin VI to various organelles in vivo and hinders peroxisome motion in a light-controllable manner. LOVDab also activates myosin VI in an in vitro gliding filament assay. Our data suggest that protein and lipid cargoes cooperate to activate myosin VI, allowing myosin VI to integrate Ca(2+), lipid, and protein cargo signals in the cell to deploy in a site-specific manner.
3.

Factors that control the chemistry of the LOV domain photocycle.

blue LOV domains Background
PLoS ONE, 27 Jan 2014 DOI: 10.1371/journal.pone.0087074 Link to full text
Abstract: Algae, plants, bacteria and fungi contain Light-Oxygen-Voltage (LOV) domains that function as blue light sensors to control cellular responses to light. All LOV domains contain a bound flavin chromophore that is reduced upon photon absorption and forms a reversible, metastable covalent bond with a nearby cysteine residue. In Avena sativa LOV2 (AsLOV2), the photocycle is accompanied by an allosteric conformational change that activates the attached phototropin kinase in the full-length protein. Both the conformational change and formation of the cysteinyl-flavin adduct are stabilized by the reduction of the N5 atom in the flavin's isoalloxazine ring. In this study, we perform a mutational analysis to investigate the requirements for LOV2 to photocycle. We mutated all the residues that interact with the chromophore isoalloxazine ring to inert functional groups but none could fully inhibit the photocycle except those to the active-site cysteine. However, electronegative side chains in the vicinity of the chromophore accelerate the N5 deprotonation and the return to the dark state. Mutations to the N414 and Q513 residues identify a potential water gate and H₂O coordination sites. These residues affect the electronic nature of the chromophore and photocycle time by helping catalyze the N5 reduction leading to the completion of the photocycle. In addition, we demonstrate that dehydration leads to drastically slower photocycle times. Finally, to investigate the requirements of an active-site cysteine for photocycling, we moved the nearby cysteine to alternative locations and found that some variants can still photocycle. We propose a new model of the LOV domain photocycle that involves all of these components.
4.

The amino-terminal helix modulates light-activated conformational changes in AsLOV2.

blue LOV domains Background
J Mol Biol, 7 Mar 2012 DOI: 10.1016/j.jmb.2012.02.037 Link to full text
Abstract: The mechanism of light-triggered conformational change and signaling in light-oxygen-voltage (LOV) domains remains elusive in spite of extensive investigation and their use in optogenetic studies. The LOV2 domain of Avenasativa phototropin 1 (AsLOV2), a member of the Per-Arnt-Sim (PAS) family, contains a flavin mononucleotide chromophore that forms a covalent bond with a cysteine upon illumination. This event leads to the release of the carboxy-terminal Jα helix, the biological output signal. Using mutational analysis, circular dichroism, and NMR, we find that the largely ignored amino-terminal helix is a control element in AsLOV2's light-activated conformational change. We further identify a direct amino-to-carboxy-terminal "input-output" signaling pathway. These findings provide a framework to rationalize the LOV domain architecture, as well as the signaling mechanisms in both isolated and tandem arrangements of PAS domains. This knowledge can be applied in engineering LOV-based photoswitches, opening up new design strategies and improving existing ones.
5.

TULIPs: tunable, light-controlled interacting protein tags for cell biology.

blue TULIP HeLa in vitro S. cerevisiae Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell cycle control
Nat Methods, 4 Mar 2012 DOI: 10.1038/nmeth.1904 Link to full text
Abstract: Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
6.

Rationally improving LOV domain-based photoswitches.

blue AsLOV2 in vitro
Nat Methods, 20 Jun 2010 DOI: 10.1038/nmeth.1473 Link to full text
Abstract: Genetically encoded protein photosensors are promising tools for engineering optical control of cellular behavior; we are only beginning to understand how to couple these light detectors to effectors of choice. Here we report a method that increases the dynamic range of an artificial photoswitch based on the LOV2 domain of Avena sativa phototropin 1 (AsLOV2). This approach can potentially be used to improve many AsLOV2-based photoswitches.
7.

Light-activated DNA binding in a designed allosteric protein.

blue AsLOV2 in vitro
Proc Natl Acad Sci USA, 30 Jul 2008 DOI: 10.1073/pnas.0709610105 Link to full text
Abstract: An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an alpha-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical "allosteric lever arm" is a general scheme for coupling the function of two proteins.
Submit a new publication to our database