Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Photo-sensitive degron variants for tuning protein stability by light.

blue AtLOV2 S. cerevisiae
BMC Syst Biol, 18 Nov 2014 DOI: 10.1186/s12918-014-0128-9 Link to full text
Abstract: Regulated proteolysis by the proteasome is one of the fundamental mechanisms used in eukaryotic cells to control cellular behavior. Efficient tools to regulate protein stability offer synthetic influence on molecular level on a selected biological process. Optogenetic control of protein stability has been achieved with the photo-sensitive degron (psd) module. This engineered tool consists of the photoreceptor domain light oxygen voltage 2 (LOV2) from Arabidopsis thaliana phototropin1 fused to a sequence that induces direct proteasomal degradation, which was derived from the carboxy-terminal degron of murine ornithine decarboxylase. The abundance of target proteins tagged with the psd module can be regulated by blue light if the degradation tag is exposed to the cytoplasm or the nucleus.
2.

A LOV2 domain-based optogenetic tool to control protein degradation and cellular function.

blue AtLOV2 S. cerevisiae Cell cycle control
Chem Biol, 18 Apr 2013 DOI: 10.1016/j.chembiol.2013.03.005 Link to full text
Abstract: Light perception is indispensable for plants to respond adequately to external cues and is linked to proteolysis of key transcriptional regulators. To provide synthetic light control of protein stability, we developed a generic photosensitive degron (psd) module combining the light-reactive LOV2 domain of Arabidopsis thaliana phot1 with the murine ornithine decarboxylase-like degradation sequence cODC1. Functionality of the psd module was demonstrated in the model organism Saccharomyces cerevisiae. Generation of conditional mutants, light regulation of cyclin-dependent kinase activity, light-based patterning of cell growth, and yeast photography exemplified its versatility. In silico modeling of psd module behavior increased understanding of its characteristics. This engineered degron module transfers the principle of light-regulated degradation to nonplant organisms. It will be highly beneficial to control protein levels in biotechnological or biomedical applications and offers the potential to render a plethora of biological processes light-switchable.
Submit a new publication to our database