Qr: author:"Siyao Liu"
Showing 1 - 5 of 5 results
1.
Optogenetic control of T cells for immunomodulation.
Abstract:
Cellular immunotherapy has transformed cancer treatment by harnessing T cells to target malignant cells. However, its broader adoption is hindered by challenges such as efficacy loss, limited persistence, tumor heterogeneity, an immunosuppressive tumor microenvironment (TME), and safety concerns related to systemic adverse effects. Optogenetics, a technology that uses light-sensitive proteins to regulate cellular functions with high spatial and temporal accuracy, offers a potential solution to overcome these issues. By enabling targeted modulation of T cell receptor signaling, ion channels, transcriptional programming, and antigen recognition, optogenetics provides dynamic control over T cell activation, cytokine production, and cytotoxic responses. Moreover, optogenetic strategies can be applied to remodel the TME by selectively activating immune responses or inducing targeted immune cell depletion, thereby enhancing T cell infiltration and immune surveillance. However, practical hurdles such as limited tissue penetration of visible light and the need for cell- or tissue-specific gene delivery must be addressed for clinical translation. Emerging solutions, including upconversion nanoparticles, are being explored to improve light delivery to deeper tissues. Future integration of optogenetics with existing immunotherapies, such as checkpoint blockade and adoptive T cell therapies, could improve treatment specificity, minimize adverse effects, and provide real-time control over immune responses. By refining the precision and adaptability of immunotherapy, optogenetics promises to further enhance both the safety and efficacy of cancer immunotherapy.
2.
Nano-optogenetic CAR-T Cell Immunotherapy.
Abstract:
Chimeric antigen receptor (CAR)-T cell immunotherapy emerges as an effective cancer treatment. However, significant safety concerns remain, such as cytokine release syndrome (CRS) and "on-target, off-tumor" cytotoxicity, due to a lack of precise control over conventional CAR-T cell activity. To address this issue, a nano-optogenetic approach has been developed to enable spatiotemporal control of CAR-T cell activity. This system is comprised of synthetic light-sensitive CAR-T cells and upconversion nanoparticles acting as an in situ nanotransducer, allowing near-infrared light to wirelessly control CAR-T cell immunotherapy.
3.
Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy.
-
Dou, Y
-
Chen, R
-
Liu, S
-
Lee, YT
-
Jing, J
-
Liu, X
-
Ke, Y
-
Wang, R
-
Zhou, Y
-
Huang, Y
Abstract:
The cGAS-STING signaling pathway has emerged as a promising target for immunotherapy development. Here, we introduce a light-sensitive optogenetic device for control of the cGAS/STING signaling to conditionally modulate innate immunity, called 'light-inducible SMOC-like repeats' (LiSmore). We demonstrate that photo-activated LiSmore boosts dendritic cell (DC) maturation and antigen presentation with high spatiotemporal precision. This non-invasive approach photo-sensitizes cytotoxic T lymphocytes to engage tumor antigens, leading to a sustained antitumor immune response. When combined with an immune checkpoint blocker (ICB), LiSmore improves antitumor efficacy in an immunosuppressive lung cancer model that is otherwise unresponsive to conventional ICB treatment. Additionally, LiSmore exhibits an abscopal effect by effectively suppressing tumor growth in a distal site in a bilateral mouse model of melanoma. Collectively, our findings establish the potential of targeted optogenetic activation of the STING signaling pathway for remote immunomodulation in mice.
4.
Engineering of NEMO as calcium indicators with large dynamics and high sensitivity.
-
Li, J
-
Shang, Z
-
Chen, JH
-
Gu, W
-
Yao, L
-
Yang, X
-
Sun, X
-
Wang, L
-
Wang, T
-
Liu, S
-
Li, J
-
Hou, T
-
Xing, D
-
Gill, DL
-
Li, J
-
Wang, SQ
-
Hou, L
-
Zhou, Y
-
Tang, AH
-
Zhang, X
-
Wang, Y
Abstract:
Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
5.
Red-shifted optogenetics comes to the spotlight.
Abstract:
Abstract not available.