Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

An adaptive tracking illumination system for optogenetic control of single bacterial cells.

blue red BphS YtvA P. aeruginosa Transgene expression Immediate control of second messengers
Appl Microbiol Biotechnol, 21 Sep 2022 DOI: 10.1007/s00253-022-12177-6 Link to full text
Abstract: Single-cell behaviors are essential during early-stage biofilm formation. In this study, we aimed to evaluate whether single-cell behaviors could be precisely and continuously manipulated by optogenetics. We thus established adaptive tracking illumination (ATI), a novel illumination method to precisely manipulate the gene expression and bacterial behavior of Pseudomonas aeruginosa on the surface at the single-cell level by using the combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation, and adaptive microscopy. ATI enables precise gene expression control by manipulating the optogenetic module gene expression and type IV pili (TFP)-mediated motility and microcolony formation during biofilm formation through bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) level modifications in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms could be controlled using ATI. Therefore, this novel method we established might markedly answer various questions or resolve problems in microbiology. KEY POINTS: • High-resolution spatial and continuous optogenetic control of individual bacteria. • Phenotype-specific optogenetic control of individual bacteria. • Capacity to control biologically relevant processes in engineered single cells.
2.

Engineering Gac/Rsm Signaling Cascade for Optogenetic Induction of the Pathogenicity Switch in Pseudomonas aeruginosa.

blue YtvA P. aeruginosa P. aeruginosa Signaling cascade control
ACS Synth Biol, 2 Jun 2021 DOI: 10.1021/acssynbio.1c00075 Link to full text
Abstract: Bacterial pathogens operate by tightly controlling the pathogenicity to facilitate invasion and survival in host. While small molecule inducers can be designed to modulate pathogenicity to perform studies of pathogen-host interaction, these approaches, due to the diffusion property of chemicals, may have unintended, or pleiotropic effects that can impose limitations on their use. By contrast, light provides superior spatial and temporal resolution. Here, using optogenetics we reengineered GacS of the opportunistic pathogen Pseudomonas aeruginosa, signal transduction protein of the global regulatory Gac/Rsm cascade which is of central importance for the regulation of infection factors. The resultant protein (termed YGS24) displayed significant light-dependent activity of GacS kinases in Pseudomonas aeruginosa. When introduced in the Caenorhabditis elegans host systems, YGS24 stimulated the pathogenicity of the Pseudomonas aeruginosa strain PAO1 in a brain-heart infusion and of another strain, PA14, in slow killing media progressively upon blue-light exposure. This optogenetic system provides an accessible way to spatiotemporally control bacterial pathogenicity in defined hosts, even specific tissues, to develop new pathogenesis systems, which may in turn expedite development of innovative therapeutics.
3.

Optogenetics reprogramming of planktonic cells for biofilm formation.

red BphS P. aeruginosa Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions Immediate control of second messengers
bioRxiv, 4 Dec 2017 DOI: 10.1101/229229 Link to full text
Abstract: Single-cell behaviors play essential roles during early-stage biofilms formation. In this study, we evaluated whether biofilm formation could be guided by precisely manipulating single cells behaviors. Thus, we established an illumination method to precisely manipulate the type IV pili (TFP) mediated motility and microcolony formation of Pseudomonas aeruginosa by using a combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation and adaptive microscopy. We termed this method as Adaptive Tracking Illumination (ATI). We reported that ATI enables the precise manipulation of TFP mediated motility and microcolony formation during biofilm formation by manipulating bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) levels in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms can be controlled using ATI. Thus, the established method (i.e., ATI) can markedly promote ongoing studies of biofilms.
4.

Optogenetics Manipulation Enables Prevention of Biofilm Formation of Engineered Pseudomonas aeruginosa on Surfaces.

blue YtvA P. aeruginosa Transgene expression Control of cell-cell / cell-material interactions
ACS Synth Biol, 31 Oct 2017 DOI: 10.1021/acssynbio.7b00273 Link to full text
Abstract: Synthetic biologists have attempted to solve real-world problems, such as those of bacterial biofilms, that are involved in the pathogenesis of many clinical infections and difficult to eliminate. To address this, we employed a blue light responding system and integrated it into the chromosomes of Pseudomonas aeruginosa. With making rational adaptions and improvements of the light-activated system, we provided a robust and convenient means to spatiotemporally control gene expression and manipulate biological processes with minimal perturbation in P. aeruginosa. It increased the light-induced gene expression up to 20-fold. Moreover, we deliberately introduced a functional protein gene PA2133 containing an EAL domain to degrade c-di-GMP into the modified system, and showed that the optimally engineered optogenetic tool inhibited the formation of P. aeruginosa biofilms through the induction of blue light, resulting in much sparser and thinner biofilms. Our approach establishes a methodology for leveraging the tools of synthetic biology to guide biofilm formation and engineer biofilm patterns with unprecedented spatiotemporal resolution. Furthermore, the findings suggest that the synthetic optogenetic system may provide a promising strategy that could be applied to control and fight biofilms.
Submit a new publication to our database