Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 30 results
1.

Three-Color Protein Photolithography with Green, Red, and Far-Red Light.

green TtCBD E. coli HeLa in vitro Control of cell-cell / cell-material interactions
Small, 18 Oct 2024 DOI: 10.1002/smll.202405687 Link to full text
Abstract: Protein photolithography is an invaluable tool for generating protein microchips and regulating interactions between cells and materials. However, the absence of light-responsive molecules that allow for the copatterning of multiple functional proteins with biocompatible visible light poses a significant challenge. Here, a new approach for photopatterning three distinct proteins on a single surface by using green, red, and far-red light is reported. The cofactor of the green light-sensitive protein CarH is engineered such that it also becomes sensitive to red and far-red light. These new cofactors are shown to be compatible with two CarH-based optogenetic tools to regulate bacterial cell-cell adhesions and gene expression in mammalian cells with red and far-red light. Further, by incorporating different CarH variants with varying light sensitivities in layer-by-layer (LbL) multiprotein films, specific layers within the films, along with other protein layers on top are precisely removed by using different colors of light, all with high spatiotemporal accuracy. Notably, with these three distinct colors of visible light, it is possible to incorporate diverse proteins under mild conditions in LbL films based on the reliable interaction between Ni2+- nitrilotriacetic acid (NTA) groups and polyhistidine-tags (His-tags)on the proteins and their subsequent photopatterning. This approach has potential applications spanning biofabrication, material engineering, and biotechnology.
2.

Reversible Photoregulation of Cell-Cell Adhesions With Opto-E-cadherin.

blue AsLOV2 A-431 HeLa MDA-MB-231 NCTC clone 929
Bio Protoc, 20 May 2024 DOI: 10.21769/bioprotoc.4995 Link to full text
Abstract: The cell-cell adhesion molecule E-cadherin has been intensively studied due to its prevalence in tissue function and its spatiotemporal regulation during epithelial-to-mesenchymal cell transition. Nonetheless, regulating and studying the dynamics of it has proven challenging. We developed a photoswitchable version of E-cadherin, named opto-E-cadherin, which can be toggled OFF with blue light illumination and back ON in the dark. Herein, we describe easy-to-use methods to test and characterise opto-E- cadherin cell clones for downstream experiments. Key features • This protocol describes how to implement optogenetic cell-cell adhesion molecules effectively (described here on the basis of opto-E-cadherin), while highlighting possible pitfalls. • Utilises equipment commonly found in most laboratories with high ease of use. • Phenotype screening is easy and done within a few hours (comparison of cell clusters in the dark vs. blue light in an aggregation assay). • Three different functionality assay systems are described. • After the cell line is established, all experiments can be performed within three days.
3.

Optogenetic Control of Bacterial Cell-Cell Adhesion Dynamics: Unraveling the Influence on Biofilm Architecture and Functionality.

blue Magnets E. coli Control of cell-cell / cell-material interactions
Adv Sci (Weinh), 13 Apr 2024 DOI: 10.1002/advs.202310079 Link to full text
Abstract: The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions with liquid-like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid-like behavior in both experiments and individual-based simulations. Consequently, dynamic cell-cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell-cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.
4.

Dynamic Light-Induced Protein Patterns at Model Membranes.

blue iLID in vitro
J Vis Exp, 23 Feb 2024 DOI: 10.3791/66531 Link to full text
Abstract: The precise localization and activation of proteins at the cell membrane at a certain time gives rise to many cellular processes, including cell polarization, migration, and division. Thus, methods to recruit proteins to model membranes with subcellular resolution and high temporal control are essential when reproducing and controlling such processes in synthetic cells. Here, a method is described for fabricating light-regulated reversible protein patterns at lipid membranes with high spatiotemporal precision. For this purpose, we immobilize the photoswitchable protein iLID (improved light-inducible dimer) on supported lipid bilayers (SLBs) and on the outer membrane of giant unilamellar vesicles (GUVs). Upon local blue light illumination, iLID binds to its partner Nano (wild-type SspB) and allows the recruitment of any protein of interest (POI) fused to Nano from the solution to the illuminated area on the membrane. This binding is reversible in the dark, which provides dynamic binding and release of the POI. Overall, this is a flexible and versatile method for regulating the localization of proteins with high precision in space and time using blue light.
5.

Photoactivation of LOV domains with chemiluminescence.

blue BcLOV4 iLID Magnets VVD in vitro Extracellular optogenetics
Chem Sci, 11 Dec 2023 DOI: 10.1039/d3sc04815b Link to full text
Abstract: Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with in situ generated light from a chemiluminescence reaction between luminol and H2O2. This activation is possible due to the spectral overlap between the blue chemiluminescence emission and the absorption bands of the flavin chromophore in LOV domains. All four LOV domain proteins with diverse backgrounds and structures (iLID, BcLOV4, nMagHigh/pMagHigh, and VVDHigh) were photoactivated by chemiluminescence as demonstrated using a bead aggregation assay. The photoactivation with chemiluminescence required a critical light-output below which the LOV domains reversed back to their dark state with protein characteristic kinetics. Furthermore, spatially confined chemiluminescence produced inside giant unilamellar vesicles (GUVs) was able to photoactivate proteins both on the membrane and in solution, leading to the recruitment of the corresponding proteins to the GUV membrane. Finally, we showed that reactive oxygen species produced by neutrophil like cells can be converted into sufficient chemiluminescence to recruit the photoswitchable protein BcLOV4-mCherry from solution to the cell membrane. The findings highlight the utility of chemiluminescence as an endogenous light source for optogenetic applications, offering new possibilities for studying cellular processes in optically non-transparent systems.
6.

Reversible photoregulation of cell-cell adhesions with opto-E-cadherin.

blue AsLOV2 A-431 HeLa MDA-MB-231 NCTC clone 929 Control of cell-cell / cell-material interactions
Nat Commun, 9 Oct 2023 DOI: 10.1038/s41467-023-41932-0 Link to full text
Abstract: E-cadherin-based cell-cell adhesions are dynamically and locally regulated in many essential processes, including embryogenesis, wound healing and tissue organization, with dysregulation manifesting as tumorigenesis and metastasis. However, the lack of tools that would provide control of the high spatiotemporal precision observed with E-cadherin adhesions hampers investigation of the underlying mechanisms. Here, we present an optogenetic tool, opto-E-cadherin, that allows reversible control of E-cadherin-mediated cell-cell adhesions with blue light. With opto-E-cadherin, functionally essential calcium binding is photoregulated such that cells expressing opto-E-cadherin at their surface adhere to each other in the dark but not upon illumination. Consequently, opto-E-cadherin provides remote control over multicellular aggregation, E-cadherin-associated intracellular signalling and F-actin organization in 2D and 3D cell cultures. Opto-E-cadherin also allows switching of multicellular behaviour between single and collective cell migration, as well as of cell invasiveness in vitro and in vivo. Overall, opto-E-cadherin is a powerful optogenetic tool capable of controlling cell-cell adhesions at the molecular, cellular and behavioural level that opens up perspectives for the study of dynamics and spatiotemporal control of E-cadherin in biological processes.
7.

Self-Regulated and Bidirectional Communication in Synthetic Cell Communities.

blue iLID in vitro Extracellular optogenetics
ACS Nano, 8 May 2023 DOI: 10.1021/acsnano.2c09908 Link to full text
Abstract: Cell-to-cell communication is not limited to a sender releasing a signaling molecule and a receiver perceiving it but is often self-regulated and bidirectional. Yet, in communities of synthetic cells, such features that render communication efficient and adaptive are missing. Here, we report the design and implementation of adaptive two-way signaling with lipid-vesicle-based synthetic cells. The first layer of self-regulation derives from coupling the temporal dynamics of the signal, H2O2, production in the sender to adhesions between sender and receiver cells. This way the receiver stays within the signaling range for the duration sender produces the signal and detaches once the signal fades. Specifically, H2O2 acts as both a forward signal and a regulator of the adhesions by activating photoswitchable proteins at the surface for the duration of the chemiluminescence. The second layer of self-regulation arises when the adhesions render the receiver permeable and trigger the release of a backward signal, resulting in bidirectional exchange. These design rules provide a concept for engineering multicellular systems with adaptive communication.
8.

An Adenosylcobalamin Specific Whole-Cell Biosensor.

green TtCBD E. coli Control of cell-cell / cell-material interactions
Adv Healthc Mater, 1 May 2023 DOI: 10.1002/adhm.202300835 Link to full text
Abstract: Vitamin B12 (cobalamin) is essential for human health and its deficiency results in anemia and neurological damage. Vitamin B12 exists in different forms with various bioactivity but most sensors are unable to discriminate between them. Here, a whole-cell agglutination assay that is specific for adenosylcobalamin (AboB12), which is one of two bioactive forms, is reported. This biosensor consists of Escherichia coli that express the AdoB12 specific binding domain of CarH at their surface. In the presence of AdoB12, CarH forms tetramers, which leads to specific bacterial cell-cell adhesions and agglutination. These CarH tetramers disassemble upon green light illumination such that reversion of the bacterial aggregation can serve as internal quality control. The agglutination assay has a detection limit of 500 nм AdoB12, works in protein-poor biofluids such as urine, and has high specificity to AdoB12 over other forms of vitamin B12 as also demonstrated with commercially available supplements. This work is a proof of concept for a cheap and easy-to-readout AdoB12 sensor that can be implemented at the point-of-care to monitor high-dose vitamin B12 supplementation.
9.

A disordered tether to iLID improves photoswitchable protein patterning on model membranes.

blue iLID in vitro
Chem Commun (Camb), 6 Apr 2023 DOI: 10.1039/d3cc00709j Link to full text
Abstract: Reversible protein patterning on model membranes is important to reproduce spatiotemporal protein dynamics in vitro. An engineered version of iLID, disiLID, with a disordered domain as a membrane tether improves the recruitment of Nano under blue light and the reversibility in the dark, which enables protein patterning on membranes with higher spatiotemporal precision.
10.

Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities.

blue red iLID PhyB/PIF6 in vitro Extracellular optogenetics Multichromatic
Small, 4 Jan 2023 DOI: 10.1002/smll.202206474 Link to full text
Abstract: Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
11.

Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey.

blue iLID in vitro Extracellular optogenetics
ACS Nano, 21 Jun 2021 DOI: 10.1021/acsnano.1c01600 Link to full text
Abstract: Cells commonly communicate with each other through diffusible molecules but nonchemical communication remains elusive. While bioluminescent organisms communicate through light to find prey or attract mates, it is still under debate if signaling through light is possible at the cellular level. Here, we demonstrate that cell to cell signaling through light is possible in artificial cell communities derived from biomimetic vesicles. In our design, artificial sender cells produce an intracellular light signal, which triggers the adhesion to receiver cells. Unlike soluble molecules, the light signal propagates fast, independent of diffusion and without the need for a transporter across membranes. To obtain a predator-prey relationship, the luminescence predator cells is loaded with a secondary diffusible poison, which is transferred to the prey cell upon adhesion and leads to its lysis. This design provides a blueprint for light based intercellular communication, which can be used for programing artificial and natural cell communities.
12.

Spatiotemporal Control Over Multicellular Migration Using Green Light Reversible Cell–Cell Interactions.

green TtCBD MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Biol, 14 Jan 2021 DOI: 10.1002/adbi.202000199 Link to full text
Abstract: The regulation of cell–cell adhesions in space and time plays a crucial role in cell biology, especially in the coordination of multicellular behavior. Therefore, tools that allow for the modulation of cell–cell interactions with high precision are of great interest to a better understanding of their roles and building tissue‐like structures. Herein, the green light‐responsive protein CarH is expressed at the plasma membrane of cells as an artificial cell adhesion receptor, so that upon addition of its cofactor vitamin B12 specific cell–cell interactions form and lead to cell clustering in a concentration‐dependent manner. Upon green light illumination, the CarH based cell–cell interactions disassemble and allow for their reversion with high spatiotemporal control. Moreover, these artificial cell–cell interactions impact cell migration, as observed in a wound‐healing assay. When the cells interact with each other in the presence of vitamin B12 in the dark, the cells form on a solid front and migrate collectively; however, under green light illumination, individual cells migrate randomly out of the monolayer. Overall, the possibility of precisely controlling cell–cell interactions and regulating multicellular behavior is a potential pathway to gaining more insight into cell–cell interactions in biological processes.
13.

Multistimuli Sensing Adhesion Unit for the Self-Positioning of Minimal Synthetic Cells.

blue iLID in vitro Extracellular optogenetics
Small, 9 Aug 2020 DOI: 10.1002/smll.202002440 Link to full text
Abstract: Cells have the ability to sense different environmental signals and position themselves accordingly in order to support their survival. Introducing analogous capabilities to the bottom-up assembled minimal synthetic cells is an important step for their autonomy. Here, a minimal synthetic cell which combines a multistimuli sensitive adhesion unit with an energy conversion module is reported, such that it can adhere to places that have the right environmental parameters for ATP production. The multistimuli sensitive adhesion unit senses light, pH, oxidative stress, and the presence of metal ions and can regulate the adhesion of synthetic cells to substrates in response to these stimuli following a chemically coded logic. The adhesion unit is composed of the light and redox responsive protein interaction of iLID and Nano and the pH sensitive and metal ion mediated binding of protein His-tags to Ni2+ -NTA complexes. Integration of the adhesion unit with a light to ATP conversion module into one synthetic cell allows it to adhere to places under blue light illumination, non-oxidative conditions, at neutral pH and in the presence of metal ions, which are the right conditions to synthesize ATP. Thus, the multistimuli responsive adhesion unit allows synthetic cells to self-position and execute their functions.
14.

Orthogonal Blue and Red Light Controlled Cell-Cell Adhesions Enable Sorting-out in Multicellular Structures.

blue red Cph1 VVD MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
ACS Synth Biol, 16 Jul 2020 DOI: 10.1021/acssynbio.0c00150 Link to full text
Abstract: The self-assembly of different cell types into multicellular structures and their organization into spatiotemporally controlled patterns are both challenging and extremely powerful to understand how cells function within tissues and for bottom-up tissue engineering. Here, we not only independently control the self-assembly of two cell types into multicellular architectures with blue and red light, but also achieve their self-sorting into distinct assemblies. This required developing two cell types that form selective and homophilic cell-cell interactions either under blue or red light using photoswitchable proteins as artificial adhesion molecules. The interactions were individually triggerable with different colors of light, reversible in the dark, and provide noninvasive and temporal control over the cell-cell adhesions. In mixtures of the two cells, each cell type self-assembled independently upon orthogonal photoactivation, and cells sorted out into separate assemblies based on specific self-recognition. These self-sorted multicellular architectures provide us with a powerful tool for producing tissue-like structures from multiple cell types and investigate principles that govern them.
15.

Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury.

blue Magnets E. coli
ACS Sens, 8 Jul 2020 DOI: 10.1021/acssensors.0c00855 Link to full text
Abstract: We present a new concept for whole-cell biosensors that couples the response to Hg2+ with bioluminescence and bacterial aggregation. This allows us to use the bacterial aggregation to preconcentrate the bioluminescent bacteria at the substrate surface and increase the sensitivity of Hg2+ detection. This whole-cell biosensor combines a Hg2+-sensitive bioluminescence reporter and light-responsive bacterial cell-cell adhesions. We demonstrate that the blue luminescence in response to Hg2+ is able to photoactivate bacterial aggregation, which provides a second readout for Hg2+ detection. In return, the Hg2+-triggered bacterial aggregation leads to faster sedimentation and more efficient formation of biofilms. At low Hg2+ concentrations, the enrichment of the bacteria in biofilms leads to an up to 10-fold increase in the signal. The activation of photoswitchable proteins with biological light is a new concept in optogenetics, and the presented bacterial biosensor design is transferable to other bioluminescent reporters with particular interest for environmental monitoring.
16.

Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities.

blue Magnets E. coli Control of cell-cell / cell-material interactions Extracellular optogenetics
ACS Synth Biol, 15 Apr 2020 DOI: 10.1021/acssynbio.0c00054 Link to full text
Abstract: Although the fundamental importance and biotechnological potential of multibacterial communities, also called biofilms, are well-known, our ability to control them is limited. We present a new way of dynamically controlling bacteria-bacteria adhesions by using blue light and how these photoswitchable adhesions can be used to regulate multicellularity and associated bacterial behavior. To achieve this, the photoswitchable proteins nMagHigh and pMagHigh were expressed on bacterial surfaces as adhesins to allow multicellular clusters to assemble under blue light and reversibly disassemble in the dark. Regulation of the bacterial cell-cell adhesions with visible light provides unique advantages including high spatiotemporal control, tunability, and noninvasive remote regulation. Moreover, these photoswitchable adhesions make it possible to regulate collective bacterial functions including aggregation, quorum sensing, biofilm formation, and metabolic cross-feeding between auxotrophic bacteria with light. Overall, the photoregulation of bacteria-bacteria adhesions provides a new way of studying bacterial cell biology and will enable the design of biofilms for biotechnological applications.
17.

Turning Cell Adhesions ON or OFF with High Spatiotemporal Precision Using the Green Light Responsive Protein CarH.

green TtCBD MCF7 Control of cell-cell / cell-material interactions Extracellular optogenetics
Chemistry, 9 Apr 2020 DOI: 10.1002/chem.202001238 Link to full text
Abstract: Spatiotemporal control of integrin-mediated cell adhesions to extracellular matrix regulates cell behavior with has numerous implications for biotechnological applications. In this work, two approaches for regulating cell adhesions in space and time with high precision are reported, both of which utilize green light. In the first design, CarH, which is a tetramer in the dark, is used to mask cRGD adhesion-peptides on a surface. Upon green light illumination, the CarH tetramer dissociates into its monomers, revealing the adhesion peptide so that cells can adhere. In the second design, the RGD motif is incorporated into the CarH protein tetramer such that cells can adhere to surfaces functionalized with this protein. The cell adhesions can be disrupted with green light, due to the disassembly of the CarH-RGD protein. Both designs allow for photoregulation with noninvasive visible light and open new possibilities to investigate the dynamical regulation of cell adhesions in cell biology.
18.

The importance of cell-cell interaction dynamics in bottom-up tissue engineering: Concepts of colloidal self-assembly in the fabrication of multicellular architectures.

blue iLID Magnets MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Nano Lett, 21 Nov 2019 DOI: 10.1021/acs.nanolett.9b04160 Link to full text
Abstract: Building tissue from cells as the basic building block based on principles of self-assembly is a challenging and promising approach. Understanding how far principles of self-assembly and self-sorting known for colloidal particles apply to cells remains unanswered. In this study, we demonstrate that not just controlling the cell-cell interactions but also their dynamics is a crucial factor that determines the formed multicellular structure, using photoswitchable interactions between cells that are activated with blue light and reverse in the dark. Tuning dynamics of the cell-cell interactions by pulsed light activation, results in multicellular architectures with different sizes and shapes. When the interactions between cells are dynamic compact and round multicellular clusters under thermodynamic control form, while otherwise branched and lose aggregates under kinetic control assemble. These structures parallel what is known for colloidal assemblies under reaction and diffusion limited cluster aggregation, respectively. Similarly, dynamic interactions between cells are essential for cells to self-sort into distinct groups. Using four different cell types, which expressed two orthogonal cell-cell interaction pairs, the cells sorted into two separate assemblies. Bringing concepts of colloidal self-assembly to bottom-up tissue engineering provides a new theoretical framework and will help in the design of more predictable tissue-like structures.
19.

Red/Far-Red Light Switchable Cargo Attachment and Release in Bacteria-Driven Microswimmers.

red PhyB/PIF6 E. coli MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Healthc Mater, 9 Oct 2019 DOI: 10.1002/adhm.201900956 Link to full text
Abstract: In bacteria-driven microswimmers, i.e., bacteriabots, artificial cargos are attached to flagellated chemotactic bacteria for active delivery with potential applications in biomedical technology. Controlling when and where bacteria bind and release their cargo is a critical step for bacteriabot fabrication and efficient cargo delivery/deposition at the target site. Toward this goal, photoregulating the cargo integration and release in bacteriabots using red and far-red light, which are noninvasive stimuli with good tissue penetration and provide high spatiotemporal control, is proposed. In the bacteriabot design, the surfaces of E. coli and microsized model cargo particles with the proteins PhyB and PIF6, which bind to each other under red light and dissociate from each other under far-red light are functionalized. Consequently, the engineered bacteria adhere and transport the model cargo under red light and release it on-demand upon far-red light illumination due to the photoswitchable PhyB-PIF6 protein interaction. Overall, the proof-of-concept for red/far-red light switchable bacteriabots, which opens new possibilities in the photoregulation in biohybrid systems for bioengineering, targeted drug delivery, and lab-on-a-chip devices, is demonstrated.
20.

Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells.

blue iLID in vitro Extracellular optogenetics
Chem Commun (Camb), 22 Jul 2019 DOI: 10.1039/c9cc04768a Link to full text
Abstract: Decorating GUVs, used as minimal synthetic cell models, with photoswitchable proteins allows controlling the adhesion between them and their assembly into multicellular structures with light. Thereby, the chemical communication between a sender and a receiver GUV, which strongly depends on their spatial proximity, can also be photoregulated.
21.

Independent Blue and Red Light Triggered Narcissistic Self-Sorting Self-Assembly of Colloidal Particles.

blue red Cph1 VVD in vitro Extracellular optogenetics Multichromatic
Small, 21 May 2019 DOI: 10.1002/smll.201901801 Link to full text
Abstract: The ability of living systems to self-sort different cells into separate assemblies and the ability to independently regulate different structures are one ingredient that gives rise to their spatiotemporal complexity. Here, this self-sorting behavior is replicated in a synthetic system with two types of colloidal particles; where each particle type independently self-assembles either under blue or red light into distinct clusters, known as narcissistic self-sorting. For this purpose, each particle type is functionalized either with the light-switchable protein VVDHigh or Cph1, which homodimerize under blue and red light, respectively. The response to different wavelengths of light and the high specificity of the protein interactions allows for the independent self-assembly of each particle type with blue or red light and narcissistic self-sorting. Moreover, as both of the photoswitchable protein interactions are reversible in the dark; also, the self-sorting is reversible and dynamic. Overall, the independent blue and red light controlled self-sorting in a synthetic system opens new possibilities to assemble adaptable, smart, and advanced materials similar to the complexity observed in tissues.
22.

Mimicking Adhesion in Minimal Synthetic Cells.

blue LOV domains Review
Adv Biosyst, 25 Feb 2019 DOI: 10.1002/adbi.201800333 Link to full text
Abstract: Cell adhesions to the extracellular matrix and to neighboring cells are fundamental to cell behavior and have also been implemented into minimal synthetic cells, which are assembled from molecular building blocks from the bottom-up. Investigating adhesion in cell mimetic models with reduced complexity provides a better understanding of biochemical and biophysical concepts underlying the cell adhesion machinery. In return, implementing cell-matrix and cell-cell adhesions into minimal synthetic cells allows reconstructing cell functions associated with cell adhesions including cell motility, multicellular prototissues, fusion of vesicles, and the self-sorting of different cell types. Cell adhesions have been mimicked using both the native cell receptors and reductionist mimetics providing a variety of specific, reversible, dynamic, and spatiotemporally controlled interactions. This review gives an overview of different minimal adhesion modules integrated into different minimal synthetic cells drawing inspiration from cell and colloidal science.
23.

Photo‐ECM: A Blue Light Photoswitchable Synthetic Extracellular Matrix Protein for Reversible Control over Cell–Matrix Adhesion.

blue AsLOV2 in vitro Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Biosyst, 29 Jan 2019 DOI: 10.1002/adbi.201800302 Link to full text
Abstract: The dynamic and spatiotemporal control of integrin‐mediated cell adhesion to RGD motifs in its extracellular matrix (ECM) is important for understating cell biology and biomedical applications because cell adhesion fundamentally regulates cellular behavior. Herein, the first photoswitchable synthetic ECM protein, Photo‐ECM, based on the blue light switchable protein LOV2 is engineered. The Photo‐ECM protein includes a RGD sequence, which is hidden in the folded LOV2 protein structure in the dark and is exposed under blue light so that integrins can bind and cells can adhere. The switchable presentation of the RGD motif allows to reversibly mediate and modulate integrin‐based cell adhesions using noninvasive blue light. With this protein cell adhesions in live cells could be reversed and the dynamics at the cellular level is observed. Hence, the Photo‐ECM opens a new possibility to investigate the spatiotemporal regulation of cell adhesions in cell biology and is the first step toward a genetically encoded and light‐responsive ECM.
24.

Blue Light Switchable Cell–Cell Interactions Provide Reversible and Spatiotemporal Control Towards Bottom-Up Tissue Engineering.

blue CRY2/CIB1 MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Biosyst, 18 Jan 2019 DOI: 10.1002/adbi.201800310 Link to full text
Abstract: Controlling cell–cell interactions is central for understanding key cellular processes and bottom-up tissue assembly from single cells. The challenge is to control cell–cell interactions dynamically and reversibly with high spati- otemporal precision noninvasively and sustainably. In this study, cell–cell interactions are controlled with visible light using an optogenetic approach by expressing the blue light switchable proteins CRY2 or CIBN on the surfaces of cells. CRY2 and CIBN expressing cells form specific heterophilic interactions under blue light providing precise control in space and time. Further, these interactions are reversible in the dark and can be repeatedly and dynamically switched on and off. Unlike previous approaches, these genetically encoded proteins allow for long-term expression of the interaction domains and respond to nontoxic low intensity blue light. In addition, these interactions are suitable to assemble cells into 3D multicellular architectures. Overall, this approach captures the dynamic and reversible nature of cell–cell interactions and controls them noninvasively and sustainably both in space and time. This provides a new way of studying cell–cell interactions and assembling cellular building blocks into tissues with unmatched flexibility.
25.

Light-Guided Motility of a Minimal Synthetic Cell.

blue iLID in vitro Extracellular optogenetics
Nano Lett, 23 Oct 2018 DOI: 10.1021/acs.nanolett.8b03469 Link to full text
Abstract: Cell motility is an important but complex process; as cells move, new adhesions form at the front and adhesions disassemble at the back. To replicate this dynamic and spatiotemporally controlled asymmetry of adhesions and achieve motility in a minimal synthetic cell, we controlled the adhesion of a model giant unilamellar vesicle (GUV) to the substrate with light. For this purpose, we immobilized the proteins iLID and Micro, which interact under blue light and dissociate from each other in the dark, on a substrate and a GUV, respectively. Under blue light, the protein interaction leads to adhesion of the vesicle to the substrate, which is reversible in the dark. The high spatiotemporal control provided by light, allowed partly illuminating the GUV and generating an asymmetry in adhesions. Consequently, the GUV moves into the illuminated area, a process that can be repeated over multiple cycles. Thus, our system reproduces the dynamic spatiotemporal distribution of adhesions and establishes mimetic motility of a synthetic cell.
Submit a new publication to our database