Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Photoswitchable binders enable temporal dissection of endogenous protein function.

cyan pdDronpa1 HeLa U-87 MG Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 14 Sep 2023 DOI: 10.1101/2023.09.14.557687 Link to full text
Abstract: General methods for spatiotemporal control of specific endogenous proteins would be broadly useful for probing protein function in living cells. Synthetic protein binders that bind and inhibit endogenous protein targets can be obtained from nanobodies, designed ankyrin repeat proteins (DARPins), and other small protein scaffolds, but generalizable methods to control their binding activity are lacking. Here, we report robust single-chain photoswitchable DARPins (psDARPins) for bidirectional optical control of endogenous proteins. We created topological variants of the DARPin scaffold by computer-aided design so fusion of photodissociable dimeric Dronpa (pdDronpa) results in occlusion of target binding at baseline. Cyan light induces pdDronpa dissociation to expose the binding surface (paratope), while violet light restores pdDronpa dimerization and paratope caging. Since the DARPin redesign leaves the paratope intact, the approach was easily applied to existing DARPins for GFP, ERK, and Ras, as demonstrated by relocalizing GFP-family proteins and inhibiting endogenous ERK and Ras with optical control. Finally, a Ras-targeted psDARPin was used to determine that, following EGF-activation of EGFR, Ras is required for sustained EGFR to ERK signaling. In summary, psDARPins provide a generalizable strategy for precise spatiotemporal dissection of endogenous protein function.
2.

Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins.

blue LOV domains Background
J Phys Chem B, 16 Mar 2017 DOI: 10.1021/acs.jpcb.7b00561 Link to full text
Abstract: Optogenetic sensitizers that selectively produce a given reactive oxygen species (ROS) constitute a promising tool for studying cell signaling processes with high levels of spatiotemporal control. However, to harness the full potential of this tool for live cell studies, the photophysics of currently available systems need to be explored further and optimized. Of particular interest in this regard, are the flavoproteins miniSOG and SOPP, both of which (1) contain the chromophore flavin mononucleotide, FMN, in a LOV-derived protein enclosure, and (2) photosensitize the production of singlet oxygen, O2(a(1)Δg). Here we present an extensive experimental study of the singlet and triplet state photophysics of FMN in SOPP and miniSOG over a physiologically relevant temperature range. Although changes in temperature only affect the singlet excited state photophysics slightly, the processes that influence the deactivation of the triplet excited state are more sensitive to temperature. Most notably, for both proteins, the rate constant for quenching of (3)FMN by ground state oxygen, O2(X(3)Σg(-)), increases ∼10-fold upon increasing the temperature from 10 to 43 °C, while the oxygen-independent channels of triplet state deactivation are less affected. As a consequence, this increase in temperature results in higher yields of O2(a(1)Δg) formation for both SOPP and miniSOG. We also show that the quantum yields of O2(a(1)Δg) production by both miniSOG and SOPP are mainly limited by the fraction of FMN triplet states quenched by O2(X(3)Σg(-)). The results presented herein provide a much-needed quantitative framework that will facilitate the future development of optogenetic ROS sensitizers.
Submit a new publication to our database