Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Fast manipulation of cellular cAMP level by light in vivo.

blue euPAC D. melanogaster in vivo HEK293 Xenopus oocytes Immediate control of second messengers Neuronal activity control
Nat Methods, 26 Nov 2006 DOI: 10.1038/nmeth975 Link to full text
Abstract: The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.
2.

Kinetic analysis of the activation of photoactivated adenylyl cyclase (PAC), a blue-light receptor for photomovements of Euglena.

blue BLUF domains Background
Photochem Photobiol Sci, 15 Mar 2005 DOI: 10.1039/b417212d Link to full text
Abstract: Photoactivated adenylyl cyclase (PAC) was first purified from a photosensing organelle (the paraflagellar body) of the unicellular flagellate Euglena gracilis, and is regarded as the photoreceptor for the step-up photophobic response. Here, we report the kinetic properties of photoactivation of PAC and a change in intracellular cAMP levels upon blue light irradiation. Activation of PAC was dependent both on photon fluence rate and duration of irradiation, between which reciprocity held well in the range of 2--50 micromol m(-2) s(-1)(total fluence of 1200 micromol m(-2)). Intermittent irradiation also caused activation of PAC in a photon fluence-dependent manner irrespective of cycle periods. Wavelength dependency of PAC activation showed prominent peaks in the UV-B/C, UV-A and blue regions of the spectrum. The time course of the changes in intracellular cAMP levels corresponded well with that of the step-up photophobic response. From this and the kinetic properties of PAC photoactivation, we concluded that an increase in intracellular cAMP levels evoked by photoactivation of PAC is a key event of the step-up photophobic response.
Submit a new publication to our database