Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.
Abstract:
Liquid-liquid phase separation plays a key role in the
assembly of diverse intracellular structures. However,
the biophysical principles by which phase separation
can be precisely localized within subregions
of the cell are still largely unclear, particularly for
low-abundance proteins. Here, we introduce an oligomerizing
biomimetic system, ‘‘Corelets,’’ and utilize
its rapid and quantitative light-controlled
tunability to map full intracellular phase diagrams,
which dictate the concentrations at which phase
separation occurs and the transition mechanism, in
a protein sequence dependent manner. Surprisingly,
both experiments and simulations show that while
intracellular concentrations may be insufficient for
global phase separation, sequestering protein ligands
to slowly diffusing nucleation centers can
move the cell into a different region of the phase diagram,
resulting in localized phase separation. This
diffusive capture mechanism liberates the cell from
the constraints of global protein abundance and is
likely exploited to pattern condensates associated
with diverse biological processes.