Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Spatiotemporal Control Over Multicellular Migration Using Green Light Reversible Cell–Cell Interactions.

green TtCBD MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Biol, 14 Jan 2021 DOI: 10.1002/adbi.202000199 Link to full text
Abstract: The regulation of cell–cell adhesions in space and time plays a crucial role in cell biology, especially in the coordination of multicellular behavior. Therefore, tools that allow for the modulation of cell–cell interactions with high precision are of great interest to a better understanding of their roles and building tissue‐like structures. Herein, the green light‐responsive protein CarH is expressed at the plasma membrane of cells as an artificial cell adhesion receptor, so that upon addition of its cofactor vitamin B12 specific cell–cell interactions form and lead to cell clustering in a concentration‐dependent manner. Upon green light illumination, the CarH based cell–cell interactions disassemble and allow for their reversion with high spatiotemporal control. Moreover, these artificial cell–cell interactions impact cell migration, as observed in a wound‐healing assay. When the cells interact with each other in the presence of vitamin B12 in the dark, the cells form on a solid front and migrate collectively; however, under green light illumination, individual cells migrate randomly out of the monolayer. Overall, the possibility of precisely controlling cell–cell interactions and regulating multicellular behavior is a potential pathway to gaining more insight into cell–cell interactions in biological processes.
2.

Orthogonal Blue and Red Light Controlled Cell-Cell Adhesions Enable Sorting-out in Multicellular Structures.

blue red Cph1 VVD MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
ACS Synth Biol, 16 Jul 2020 DOI: 10.1021/acssynbio.0c00150 Link to full text
Abstract: The self-assembly of different cell types into multicellular structures and their organization into spatiotemporally controlled patterns are both challenging and extremely powerful to understand how cells function within tissues and for bottom-up tissue engineering. Here, we not only independently control the self-assembly of two cell types into multicellular architectures with blue and red light, but also achieve their self-sorting into distinct assemblies. This required developing two cell types that form selective and homophilic cell-cell interactions either under blue or red light using photoswitchable proteins as artificial adhesion molecules. The interactions were individually triggerable with different colors of light, reversible in the dark, and provide noninvasive and temporal control over the cell-cell adhesions. In mixtures of the two cells, each cell type self-assembled independently upon orthogonal photoactivation, and cells sorted out into separate assemblies based on specific self-recognition. These self-sorted multicellular architectures provide us with a powerful tool for producing tissue-like structures from multiple cell types and investigate principles that govern them.
3.

Blue Light Switchable Cell–Cell Interactions Provide Reversible and Spatiotemporal Control Towards Bottom-Up Tissue Engineering.

blue CRY2/CIB1 MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Biosyst, 18 Jan 2019 DOI: 10.1002/adbi.201800310 Link to full text
Abstract: Controlling cell–cell interactions is central for understanding key cellular processes and bottom-up tissue assembly from single cells. The challenge is to control cell–cell interactions dynamically and reversibly with high spati- otemporal precision noninvasively and sustainably. In this study, cell–cell interactions are controlled with visible light using an optogenetic approach by expressing the blue light switchable proteins CRY2 or CIBN on the surfaces of cells. CRY2 and CIBN expressing cells form specific heterophilic interactions under blue light providing precise control in space and time. Further, these interactions are reversible in the dark and can be repeatedly and dynamically switched on and off. Unlike previous approaches, these genetically encoded proteins allow for long-term expression of the interaction domains and respond to nontoxic low intensity blue light. In addition, these interactions are suitable to assemble cells into 3D multicellular architectures. Overall, this approach captures the dynamic and reversible nature of cell–cell interactions and controls them noninvasively and sustainably both in space and time. This provides a new way of studying cell–cell interactions and assembling cellular building blocks into tissues with unmatched flexibility.
Submit a new publication to our database