1.
Photochemistry of flavoprotein light sensors.
Abstract:
Three major classes of flavin photosensors, light oxygen voltage (LOV) domains, blue light sensor using FAD (BLUF) proteins and cryptochromes (CRYs), regulate diverse biological activities in response to blue light. Recent studies of structure, spectroscopy and chemical mechanism have provided unprecedented insight into how each family operates at the molecular level. In general, the photoexcitation of the flavin cofactor leads to changes in redox and protonation states that ultimately remodel protein conformation and molecular interactions. For LOV domains, issues remain regarding early photochemical events, but common themes in conformational propagation have emerged across a diverse family of proteins. For BLUF proteins, photoinduced electron transfer reactions critical to light conversion are defined, but the subsequent rearrangement of hydrogen bonding networks key for signaling remains highly controversial. For CRYs, the relevant photocycles are actively debated, but mechanistic and functional studies are converging. Despite these challenges, our current understanding has enabled the engineering of flavoprotein photosensors for control of signaling processes within cells.
2.
Light-induced subunit dissociation by a light-oxygen-voltage domain photoreceptor from Rhodobacter sphaeroides.
Abstract:
Light-oxygen-voltage (LOV) domains bind a flavin chromophore to serve as blue light sensors in a wide range of eukaryotic and prokaryotic proteins. LOV domains are associated with a variable effector domain or a separate protein signaling partner to execute a wide variety of functions that include regulation of kinases, generation of anti-sigma factor antagonists, and regulation of circadian clocks. Here we present the crystal structure, photocycle kinetics, association properties, and spectroscopic features of a full-length LOV domain protein from Rhodobacter sphaeroides (RsLOV). RsLOV exhibits N- and C-terminal helical extensions that form an unusual helical bundle at its dimer interface with some resemblance to the helical transducer of sensory rhodopsin II. The blue light-induced conformational changes of RsLOV revealed from a comparison of light- and dark-state crystal structures support a shared signaling mechanism of LOV domain proteins that originates with the light-induced formation of a flavin-cysteinyl photoadduct. Adduct formation disrupts hydrogen bonding in the active site and propagates structural changes through the LOV domain core to the N- and C-terminal extensions. Single-residue variants in the active site and dimer interface of RsLOV alter photoadduct lifetimes and induce structural changes that perturb the oligomeric state. Size exclusion chromatography, multiangle light scattering, small-angle X-ray scattering, and cross-linking studies indicate that RsLOV dimerizes in the dark but, upon light excitation, dissociates into monomers. This light-induced switch in oligomeric state may prove to be useful for engineering molecular associations in controlled cellular settings.