Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum.

blue CRY2/CIB1 Cos-7 Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Dev Cell, 1 Apr 2024 DOI: 10.1016/j.devcel.2024.03.014 Link to full text
Abstract: The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.
2.

Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly.

green TtCBD in vitro Extracellular optogenetics
Sci Adv, 9 Oct 2020 DOI: 10.1126/sciadv.abc4824 Link to full text
Abstract: Axon regeneration constitutes a fundamental challenge for regenerative neurobiology, which necessitates the use of tailor-made biomaterials for controllable delivery of cells and biomolecules. An increasingly popular approach for creating these materials is to directly assemble engineered proteins into high-order structures, a process that often relies on sophisticated protein chemistry. Here, we present a simple approach for creating injectable, photoresponsive hydrogels via metal-directed assembly of His6-tagged proteins. The B12-dependent photoreceptor protein CarHC can complex with transition metal ions through an amino-terminal His6-tag, which can further undergo a sol-gel transition upon addition of AdoB12, leading to the formation of hydrogels with marked injectability and photodegradability. The inducible phase transitions further enabled facile encapsulation and release of cells and proteins. Injecting the Zn2+-coordinated gels decorated with leukemia inhibitory factor into injured mouse optic nerves led to prolonged cellular signaling and enhanced axon regeneration. This study illustrates a powerful strategy for designing injectable biomaterials.
Submit a new publication to our database