The Cryptochrome Blue Light Receptors.
Abstract:
Cryptochromes are photolyase-like blue light receptors originally discovered in Arabidopsis but later found in other
plants, microbes, and animals. Arabidopsis has two cryptochromes, CRY1 and CRY2, which mediate primarily blue light
inhibition of hypocotyl elongation and photoperiodic control of fl oral initiation, respectively. In addition, cryptochromes
also regulate over a dozen other light responses, including circadian rhythms, tropic growth, stomata opening, guard
cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed
cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Cryptochromes
have two domains, the N-terminal PHR (Photolyase-Homologous Region) domain that bind the chromophore
FAD (flavin adenine dinucleotide), and the CCE (CRY C-terminal Extension) domain that appears intrinsically unstructured
but critical to the function and regulation of cryptochromes. Most cryptochromes accumulate in the nucleus,
and they undergo blue light-dependent phosphorylation or ubiquitination. It is hypothesized that photons excite electrons
of the fl avin molecule, resulting in redox reaction or circular electron shuttle and conformational changes of the
photoreceptors. The photoexcited cryptochrome are phosphorylated to adopt an open conformation, which interacts
with signaling partner proteins to alter gene expression at both transcriptional and posttranslational levels and consequently
the metabolic and developmental programs of plants.