Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Short RNA chaperones promote aggregation-resistant TDP-43 conformers to mitigate neurodegeneration.

blue CRY2olig HEK293 Organelle manipulation
bioRxiv, 15 Dec 2024 DOI: 10.1101/2024.12.14.628507 Link to full text
Abstract: Aberrant aggregation of the prion-like, RNA-binding protein TDP-43 underlies several debilitating neurodegenerative proteinopathies, including amyotrophic lateral sclerosis (ALS). Here, we define how short, specific RNAs antagonize TDP-43 aggregation. Short, specific RNAs engage and stabilize the TDP-43 RNA-recognition motifs, which allosterically destabilizes a conserved helical region in the prion-like domain, thereby promoting aggregationresistant conformers. By mining sequence space, we uncover short RNAs with enhanced activity against TDP-43 and diverse disease-linked variants. The solubilizing activity of enhanced short RNA chaperones corrects aberrant TDP-43 phenotypes in optogenetic models and ALS patientderived neurons. Remarkably, an enhanced short RNA chaperone mitigates TDP-43 proteinopathy and neurodegeneration in mice. Our studies reveal mechanisms of short RNA chaperones and pave the way for the development of short RNA therapeutics for fatal TDP-43 proteinopathies.
2.

RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.

blue CRY2/CRY2 CRY2olig HEK293 ReNcell VM Organelle manipulation
Neuron, 27 Feb 2019 DOI: 10.1016/j.neuron.2019.01.048 Link to full text
Abstract: TDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control. We show that the formation of pathologically relevant inclusions is driven by aberrant interactions between low-complexity domains of TDP-43 that are antagonized by RNA binding. Although stress granules are hypothesized to be a conduit for seeding TDP-43 proteinopathy, we demonstrate pathological inclusions outside these RNA-rich structures. Furthermore, we show that aberrant phase transitions of cytoplasmic TDP-43 are neurotoxic and that treatment with oligonucleotides composed of TDP-43 target sequences prevent inclusions and rescue neurotoxicity. Collectively, these studies provide insight into the mechanisms that underlie TDP-43 proteinopathy and present a potential avenue for therapeutic intervention.
Submit a new publication to our database