Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Jessica Rumfeldt"
Showing 1 - 2 of 2 results
1.

Traits of Bathy Phytochromes and Application to Bacterial Optogenetics.

red Phytochromes Background
ACS Synth Biol, 11 Jul 2025 DOI: 10.1021/acssynbio.5c00337 Link to full text
Abstract: Phytochromes are photoreceptors sensitive to red and far-red light, found in a wide variety of organisms, including plants, fungi, and bacteria. Bacteriophytochromes (BphPs) can be switched between a red light-sensitive Pr state and a far-red light-sensitive Pfr state by illumination. In so-called prototypical BphPs, the Pr state functions as the thermally favored resting state, whereas Pfr is more stable in bathy BphPs. The prototypical DrBphP from Deinococcus radiodurans has been shown to be compatible with different output module types. Even though red light-regulated optogenetic tools are available, like the pREDusk system based on the DrBphP photosensory module, far-red light-modulated variants are still rare. Here, we study the underlying contributors to bathy over prototypical BphP behavior by way of various chimeric constructs between pREDusk and representative bathy BphPs. We pinpoint shared traits of the otherwise heterogeneous subgroup of bathy BphPs and highlight the importance of the sensor-effector linker in light modulation of histidine kinase activity. Informed by these data, we introduce the far-red light-activated system "pFREDusk", based on a histidine kinase activity governed by a bathy photosensory module. With this tool, we expand the optogenetic toolbox into wavelengths of increased sample and tissue penetration.
2.

Engineered bacteriophytochrome heterodimers for research and applications.

red Phytochromes Background
J Biol Chem, 4 Jul 2025 DOI: 10.1016/j.jbc.2025.110452 Link to full text
Abstract: Many proteins are dimeric, functioning as complexes of two identical or different subunits. Bacteriophytochromes are homodimeric photoreceptor proteins that sense red/far-red light with a photosensory module (PSM) and convert it to a biological response via an output module, usually a histidine kinase (HK). Here, we generate monomeric bacteriophytochrome PSMs that form stable heterodimers once mixed by modifying two salt bridges at the dimerization interface of the Deinococcus radiodurans phytochrome (DrBphP). We confirm that these heterodimeric PSMs can control output HK module activity in response to red light and reveal that dimerization is required for kinase activity of the model HK FixL, but not necessarily for phosphatase activity of DrBphP. By applying the heterodimeric variants to a red light-regulated gene expression tool, we exemplify the combined control of cellular events using both heterodimerization and light. These results pave the way for new heterodimeric systems, for example, in receptor protein research and optogenetics.
Submit a new publication to our database