1.
Precise Control of Intracellular Trafficking and Receptor-Mediated Endocytosis in Living Cells and Behaving Animals.
-
Chen, SC
-
Zeng, NJ
-
Liu, GY
-
Wang, HC
-
Lin, TY
-
Tai, YL
-
Chen, CY
-
Fang, Y
-
Chuang, YC
-
Kao, CL
-
Cheng, H
-
Wu, BH
-
Sun, PC
-
Bayansan, O
-
Chiu, YT
-
Shih, CH
-
Chung, WH
-
Yang, JB
-
Wang, LH
-
Chiang, PH
-
Chen, CH
-
Wagner, OI
-
Wang, YC
-
Lin, YC
Abstract:
Intracellular trafficking, an extremely complex network, dynamically orchestrates nearly all cellular activities. A versatile method that enables the manipulation of target transport pathways with high spatiotemporal accuracy in vitro and in vivo is required to study how this network coordinates its functions. Here, a new method called RIVET (Rapid Immobilization of target Vesicles on Engaged Tracks) is presented. Utilizing inducible dimerization between target vesicles and selective cytoskeletons, RIVET can spatiotemporally halt numerous intracellular trafficking pathways within seconds in a reversible manner. Its highly specific perturbations allow for the real-time dissection of the dynamic relationships among different trafficking pathways. Moreover, RIVET is capable of inhibiting receptor-mediated endocytosis. This versatile system can be applied from the cellular level to whole organisms. RIVET opens up new avenues for studying intracellular trafficking under various physiological and pathological conditions and offers potential strategies for treating trafficking-related disorders.
2.
Precise control of microtubule disassembly in living cells.
-
Liu, GY
-
Chen, SC
-
Lee, GH
-
Shaiv, K
-
Chen, PY
-
Cheng, H
-
Hong, SR
-
Yang, WT
-
Huang, SH
-
Chang, YC
-
Wang, HC
-
Kao, CL
-
Sun, PC
-
Chao, MH
-
Lee, YY
-
Tang, MJ
-
Lin, YC
Abstract:
Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule-cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.