Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

Multicolor optogenetics for regulating flux ratio of three glycolytic pathways using EL222 and CcaSR in Escherichia coli.

blue green CcaS/CcaR EL222 E. coli Transgene expression Multichromatic
Biotechnol Bioeng, 20 Dec 2023 DOI: 10.1002/bit.28628 Link to full text
Abstract: Optogenetics is an attractive synthetic biology tool for controlling the metabolic flux distribution. Here, we demonstrated optogenetic flux ratio control of glycolytic pathways consisting of the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways by illuminating multicolor lights using blue light-responsive EL222 and green/red light-responsive CcaSR in Escherichia coli. EL222 forms a dimer and binds to a particular DNA sequence under blue light; therefore, target gene expression can be reduced or induced by inserting a recognition sequence into its promoter regions. First, a flux ratio between the PP and ED pathways was controlled by blue light using EL222. After blocking the EMP pathway, the EL222-recognition sequence was inserted between the -35 and -10 regions of gnd to repress the PP flux and was also inserted upstream of the -35 region of edd to induce ED flux. After adjusting light intensity, the PP:ED flux ratios were 60:39% and 29:70% under dark and blue light conditions, respectively. Finally, a CcaSR-based pgi expression system was implemented to control the flux ratio between the EMP and PP + ED pathways by illuminating green/red light. The EMP:PP:ED flux ratios were 80:9:11%, 14:35:51%, and 33:5:62% under green, red, and red and blue light, respectively.
2.

Flux controlling technology for central carbon metabolism for efficient microbial bio-production.

blue green LOV domains Phytochromes Review
Curr Opin Biotechnol, 30 May 2020 DOI: 10.1016/j.copbio.2020.04.003 Link to full text
Abstract: Syntheses of many commodities that are produced using microorganisms require cofactors such as ATP and NAD(P)H. Thus, optimization of the flux distribution in central carbon metabolism, which plays a key role in cofactor regeneration, is critical for enhancing the production of the target compounds. Since the intracellular and extracellular conditions change over time in the fermentation process, dynamic control of the metabolic system for maintaining the cellular state appropriately is necessary. Here, we review techniques for detecting the intracellular metabolic state with fluorescent sensors and controlling the flux of central carbon metabolism with optogenetic tools, as well as present a prospect of bio-production processes for fine-tuning the flux distribution.
3.

Light-inducible flux control of triosephosphate isomerase on glycolysis in Escherichia coli.

green CcaS/CcaR E. coli Transgene expression
Biotechnol Bioeng, 20 Aug 2019 DOI: 10.1002/bit.27148 Link to full text
Abstract: An engineering tool for controlling flux distribution on metabolic pathways to an appropriate state is highly desirable in bio-production. An optogenetic switch, which regulates gene expression by light illumination is an attractive on/off switchable system, and is a promising way for flux control with an external stimulus. We demonstrated a light-inducible flux control between glycolysis and the methylglyoxal (MGO) pathway in Escherichia coli using a CcaS/CcaR system. CcaR is phosphorylated by green light and is dephosphorylated by red light. Phosphorylated CcaR induces gene expression under the cpcG2 promoter. The tpiA gene was expressed under the cpcG2 promoter in a genomic tpiA deletion strain. The strain was then cultured with glucose minimum medium under green or red light. We found that tpiA mRNA level under green light was four times higher than that under red light. The repression of tpiA expression led to a decrease in glycolytic flux, resulting in slower growth under red light (0.25 h-1 ) when compared to green light (0.37 h-1 ). The maximum extracellular MGO concentration under red light (0.2 mM) was higher than that under green light (0.05 mM). These phenotypes confirm that the MGO pathway flux was enhanced under red light. This article is protected by copyright. All rights reserved.
4.

Optogenetic switch for controlling the central metabolic flux of Escherichia coli.

green CcaS/CcaR E. coli Transgene expression
Metab Eng, 14 Jun 2019 DOI: 10.1016/j.ymben.2019.06.002 Link to full text
Abstract: Dynamically controlling cellular metabolism can improve a cell's yield and productivity towards a target compound. However, the application of this strategy is currently limited by the availability of reversible metabolic switches. Unlike chemical inducers, light can readily be applied and removed from the medium multiple times without causing chemical changes. This makes light-inducible systems a potent tool to dynamically control cellular metabolism. Here we describe the construction of a light-inducible metabolic switch to regulate flux distribution between two glycolytic pathways, the Embden-Meyerhof-Parnas (EMP) and oxidative pentose phosphate (oxPP) pathways. This was achieved by using chromatic acclimation sensor/regulator (CcaSR) optogenetic system to control the expression of pgi, a metabolic gene which expression determines flux distribution between EMP and oxPP pathways. Control over these pathways may allow us to maximize Escherichia coli's yield on highly-reduced compounds such as mevalonate. Background pgi expression of the initial CcaSR construct was too high to significantly reduce pgi expression during the OFF-state. Therefore, we attenuated the system's output leakage by adjusting plasmid copy number and by tagging Pgi with ssRA protein degradation signal. Using our CcaSR-pgi ver.3, we could control EMP:oxPP flux ratio to 50:49 and 0.5:99 (of total glycolytic flux) by exposure to green and red light, respectively.
Submit a new publication to our database