Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation.

blue UV LOV domains UV receptors Review
J Mol Biol, 7 Nov 2023 DOI: 10.1016/j.jmb.2023.168356 Link to full text
Abstract: The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.
2.

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography.

blue LOV domains Background
bioRxiv, 6 Nov 2023 DOI: 10.1101/2023.11.06.565770 Link to full text
Abstract: Light-Oxygen-Voltage (LOV) domains are small photosensory flavoprotein modules that allow converting external stimuli (sunlight) into intracellular signals responsible for various cell behavior (e.g., phototropism and chloroplast relocation). This ability relies on the light-induced formation of a covalent thioether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that results in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the observation of the activation cascade of the LOV domain in real-time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to the actual data collection process, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the obtained crystals preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thioether adduct and the C-terminal region implicated in the signal transduction process.
3.

Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein.

blue LOV domains Background
Sci Rep, 20 Feb 2019 DOI: 10.1038/s41598-019-38955-3 Link to full text
Abstract: miniSOG is the first flavin-binding protein that has been developed with the specific aim of serving as a genetically-encodable light-induced source of singlet oxygen (1O2). We have determined its 1.17 Å resolution structure, which has allowed us to investigate its mechanism of photosensitization using an integrated approach combining spectroscopic and structural methods. Our results provide a structural framework to explain the ability of miniSOG to produce 1O2 as a competition between oxygen- and protein quenching of its triplet state. In addition, a third excited-state decay pathway has been identified that is pivotal for the performance of miniSOG as 1O2 photosensitizer, namely the photo-induced transformation of flavin mononucleotide (FMN) into lumichrome, which increases the accessibility of oxygen to the flavin FMN chromophore and makes protein quenching less favourable. The combination of the two effects explains the increase in the 1O2 quantum yield by one order of magnitude upon exposure to blue light. Besides, we have identified several surface electron-rich residues that are progressively photo-oxidized, further contributing to facilitate the production of 1O2. Our results help reconcile the apparent poor level of 1O2 generation by miniSOG and its excellent performance in correlative light and electron microscopy experiments.
Submit a new publication to our database