Showing 1 - 3 of 3 results
1.
A rich get richer effect governs intracellular condensate size distributions.
Abstract:
Phase separation of biomolecules into condensates has emerged as a ubiquitous mechanism for intracellular organization and impacts many intracellular processes, including reaction pathways through clustering of enzymes and their intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here, we utilize a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. We find that both native nuclear speckles and FUS condensates formed with the synthetic Corelet system obey an exponential size distribution, which can be recapitulated in Monte Carlo simulations of fast nucleation followed by coalescence. By contrast, pathological aggregation of cytoplasmic Huntingtin polyQ protein exhibits a power-law size distribution, with an exponent of −1.41 ± 0.02. These distinct behaviors reflect the relative importance of nucleation and coalescence kinetics: introducing continuous condensate nucleation into the Monte Carlo coarsening simulations gives rise to polyQ-like power-law behavior. We demonstrate that the emergence of power-law distributions under continuous nucleation reflects a “rich get richer” effect, whose extent may play a general role in the determination of condensate size distributions.
2.
Composition-dependent thermodynamics of intracellular phase separation.
Abstract:
Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.
3.
Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome.
Abstract:
Phase transitions involving biomolecular liquids are a
fundamental mechanism underlying intracellular organization.
In the cell nucleus, liquid-liquid phase
separation of intrinsically disordered proteins (IDPs)
is implicated in assembly of the nucleolus, as well
as transcriptional clusters, and other nuclear bodies.
However, it remains unclear whether and how physical
forces associated with nucleation, growth, and
wetting of liquid condensates can directly restructure
chromatin. Here, we use CasDrop, a novel
CRISPR-Cas9-based optogenetic technology, to
show that various IDPs phase separate into liquid
condensates that mechanically exclude chromatin
as they grow and preferentially form in low-density,
largely euchromatic regions. A minimal physical
model explains how this stiffness sensitivity arises
from lower mechanical energy associated with deforming
softer genomic regions. Targeted genomic
loci can nonetheless be mechanically pulled together
through surface tension-driven coalescence. Nuclear
condensates may thus function as mechanoactive
chromatin filters, physically pulling in targeted
genomic loci while pushing out non-targeted regions
of the neighboring genome.