Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 1 of 1 results
1.

Rapid and reversible regulation of cell cycle progression in budding yeast using optogenetics.

blue EL222 S. cerevisiae Cell cycle control
bioRxiv, 22 Sep 2024 DOI: 10.1101/2024.09.21.614242 Link to full text
Abstract: The regulatory complexity of the eukaryotic cell cycle poses technical challenges in experiment design and data interpretation, leaving gaps in our understanding of how cells coordinate cell cycle-related processes. Traditional methods, such as knockouts and deletions are often ineffective to compensatory interactions in the cell cycle control network, while chemical agents that cause cell cycle arrest can have undesired pleiotropic effects. Synthetic inducible systems targeting specific cell cycle regulators offer potential solutions but are limited by the need for external inducers, which make fast reversibility technically challenging. To address these issues, we developed an optogenetic tool (OPTO-Cln2) that enables light-controlled and reversible regulation of G1 progression in budding yeast. Through extensive validation and benchmarking via time-lapse microscopy, we verify that OPTO-Cln2-carrying strains can rapidly toggle between normal and altered G1 progression. By integrating OPTO-Cln2 with a readout of nutrient-sensing pathways (TORC1 and PKA), we show that the oscillatory activity of these pathways is tightly coordinated with G1 progression. Finally, we demonstrate that the rapid reversibility of OPTO-Cln2 facilitates multiple cycles of synchronous arrest and release of liquid cell cultures. Our work provides a powerful new approach for studying cell cycle dynamics and the coordination of growth- with division-related processes.
Submit a new publication to our database