Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: application:"Immediate control of second messengers"
Showing 1 - 25 of 100 results
1.

Atomistic mechanisms of the regulation of small-conductance Ca2+-activated K+ channel (SK2) by PIP2.

blue CRY2/CIB1 CHO rabbit cardiomyocytes Immediate control of second messengers
Proc Natl Acad Sci U S A, 17 Sep 2024 DOI: 10.1073/pnas.2318900121 Link to full text
Abstract: Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
2.

An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function.

blue bPAC (BlaC) rat cardiomyocytes Immediate control of second messengers
Adv Sci (Weinh), 25 Jul 2024 DOI: 10.1002/advs.202402236 Link to full text
Abstract: Bioelectronic medicine is emerging as a powerful approach for restoring lost endogenous functions and addressing life-altering maladies such as cardiac disorders. Systems that incorporate both modulation of cellular function and recording capabilities can enhance the utility of these approaches and their customization to the needs of each patient. Here is report an integrated optogenetic and bioelectronic platform for stable and long-term stimulation and monitoring of cardiomyocyte function in vitro. Optical inputs are achieved through the expression of a photoactivatable adenylyl cyclase, that when irradiated with blue light causes a dose-dependent and time-limited increase in the secondary messenger cyclic adenosine monophosphate with subsequent rise in autonomous cardiomyocyte beating rate. Bioelectronic readouts are obtained through a multi-electrode array that measures real-time electrophysiological responses at 32 spatially-distinct locations. Irradiation at 27 µW mm-2 results in a 14% elevation of the beating rate within 20-25 min, which remains stable for at least 2 h. The beating rate can be cycled through "on" and "off" light states, and its magnitude is a monotonic function of irradiation intensity. The integrated platform can be extended to stretchable and flexible substrates, and can open new avenues in bioelectronic medicine, including closed-loop systems for cardiac regulation and intervention, for example, in the context of arrythmias.
3.

Optogenetic induction of chronic glucocorticoid exposure in early-life leads to blunted stress-response in larval zebrafish.

blue bPAC (BlaC) zebrafish in vivo Immediate control of second messengers
Eur J Neurosci, 11 Apr 2024 DOI: 10.1111/ejn.16301 Link to full text
Abstract: Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.
4.

Live-cell fluorescence imaging and optogenetic control of PKA kinase activity in fission yeast Schizosaccharomyces pombe.

blue bPAC (BlaC) S. cerevisiae Immediate control of second messengers
Yeast, 7 Apr 2024 DOI: 10.1002/yea.3937 Link to full text
Abstract: The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.
5.

A light-controlled phospholipase C for imaging of lipid dynamics and controlling neural plasticity.

blue iLID HEK293T mouse in vivo Immediate control of second messengers
Cell Chem Biol, 5 Apr 2024 DOI: 10.1016/j.chembiol.2024.03.001 Link to full text
Abstract: Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCβ (opto-PLCβ). Opto-PLCβ uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCβ triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCβ can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCβ offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.
6.

Light-Mediated Enhancement of Glucose-Stimulated Insulin Release of Optogenetically Engineered Human Pancreatic Beta-Cells.

blue bPAC (BlaC) human pancreatic beta cells Immediate control of second messengers
ACS Synth Biol, 20 Feb 2024 DOI: 10.1021/acssynbio.3c00653 Link to full text
Abstract: Enhancement of glucose-stimulated insulin secretion (GSIS) in exogenously delivered pancreatic β-cells is desirable, for example, to overcome the insulin resistance manifested in type 2 diabetes or to reduce the number of β-cells for supporting homeostasis of blood sugar in type 1 diabetes. Optogenetically engineered cells can potentiate their function with exposure to light. Given that cyclic adenosine monophosphate (cAMP) mediates GSIS, we surmised that optoamplification of GSIS is feasible in human β-cells carrying a photoactivatable adenylyl cyclase (PAC). To this end, human EndoC-βH3 cells were engineered to express a blue-light-activated PAC, and a workflow was established combining the scalable manufacturing of pseudoislets (PIs) with efficient adenoviral transduction, resulting in over 80% of cells carrying PAC. Changes in intracellular cAMP and GSIS were determined with the photoactivation of PAC in vitro as well as after encapsulation and implantation in mice with streptozotocin-induced diabetes. cAMP rapidly rose in β-cells expressing PAC with illumination and quickly declined upon its termination. Light-induced amplification in cAMP was concomitant with a greater than 2-fold GSIS vs β-cells without PAC in elevated glucose. The enhanced GSIS retained its biphasic pattern, and the rate of oxygen consumption remained unchanged. Diabetic mice receiving the engineered β-cell PIs exhibited improved glucose tolerance upon illumination compared to those kept in the dark or not receiving cells. The findings support the use of optogenetics for molecular customization of the β-cells toward better treatments for diabetes without the adverse effects of pharmacological approaches.
7.

Bidirectional Allosteric Coupling between PIP2 Binding and the Pore of the Oncochannel TRPV6.

blue CRY2/CIB1 HEK293 Immediate control of second messengers
Int J Mol Sci, 3 Jan 2024 DOI: 10.3390/ijms25010618 Link to full text
Abstract: The epithelial ion channel TRPV6 plays a pivotal role in calcium homeostasis. Channel function is intricately regulated at different stages, involving the lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Given that dysregulation of TRPV6 is associated with various diseases, including different types of cancer, there is a compelling need for its pharmacological targeting. Structural studies provide insights on how TRPV6 is affected by different inhibitors, with some binding to sites else occupied by lipids. These include the small molecule cis-22a, which, however, also binds to and thereby blocks the pore. By combining calcium imaging, electrophysiology and optogenetics, we identified residues within the pore and the lipid binding site that are relevant for regulation by cis-22a and PIP2 in a bidirectional manner. Yet, mutation of the cytosolic pore exit reduced inhibition by cis-22a but preserved sensitivity to PIP2 depletion. Our data underscore allosteric communication between the lipid binding site and the pore and vice versa for most sites along the pore.
8.

AAV-compatible optogenetic tools for activating endogenous calcium channels in vivo.

blue CRY2/CIB1 CRY2/CRY2 BV-2 HeLa mouse astrocytes primary mouse hippocampal neurons Immediate control of second messengers
Mol Brain, 17 Oct 2023 DOI: 10.1186/s13041-023-01061-7 Link to full text
Abstract: Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.
9.

Visual quantification of prostaglandin E2 discharge from a single cell.

blue CRY2clust HeLa MDCK Immediate control of second messengers
Cell Struct Funct, 7 Oct 2023 DOI: 10.1247/csf.23047 Link to full text
Abstract: Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.
10.

CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions.

blue iLID HeLa Immediate control of second messengers
J Biol Chem, 20 Sep 2023 DOI: 10.1016/j.jbc.2023.105269 Link to full text
Abstract: Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.
11.

Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation.

red DmPAC E. coli Transgene expression Immediate control of second messengers
J Mol Biol, 31 Aug 2023 DOI: 10.1016/j.jmb.2023.168257 Link to full text
Abstract: Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.
12.

Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.

blue bPAC (BlaC) OaPAC zebrafish in vivo Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 17 Aug 2023 DOI: 10.7554/elife.83975 Link to full text
Abstract: Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.
13.

Remotely Controllable Engineered Bacteria for Targeted Therapy of Pseudomonas aeruginosa Infection.

red BphS P. aeruginosa Immediate control of second messengers
ACS Synth Biol, 7 Jul 2023 DOI: 10.1021/acssynbio.2c00655 Link to full text
Abstract: Pseudomonas aeruginosa (P. aeruginosa) infection has become an intractable problem worldwide due to the decreasing efficacy of the mainstay therapy, antibiotic treatment. Hence, exploring new drugs and therapies to address this issue is crucial. Here, we construct a chimeric pyocin (ChPy) to specifically kill P. aeruginosa and engineer a near-infrared (NIR) light-responsive strain to produce and deliver this drug. Our engineered bacterial strain can continuously produce ChPy in the absence of light and release it to kill P. aeruginosa via remotely and precisely controlled bacterial lysis induced by NIR light. We demonstrate that our engineered bacterial strain is effective in P. aeruginosa-infected wound therapy in the mouse model, as it eradicated PAO1 in mouse wounds and shortened the wound healing time. Our work presents a potentially spatiotemporal and noninvasively controlled therapeutic strategy of engineered bacteria for the targeted treatment of P. aeruginosa infections.
14.

Engineering of NEMO as calcium indicators with large dynamics and high sensitivity.

blue AsLOV2 HeLa Immediate control of second messengers
Nat Methods, 20 Apr 2023 DOI: 10.1038/s41592-023-01852-9 Link to full text
Abstract: Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
15.

Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs mouse in vivo Immediate control of second messengers
Mol Ther, 16 Mar 2023 DOI: 10.1016/j.ymthe.2023.03.013 Link to full text
Abstract: Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the β-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.
16.

Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in Caenorhabditis elegans.

red PhyB/PIF3 C. elegans in vivo Immediate control of second messengers
ACS Synth Biol, 20 Feb 2023 DOI: 10.1021/acssynbio.2c00461 Link to full text
Abstract: Optogenetic techniques have been intensively applied to the nematode Caenorhabditis elegans to investigate its neural functions. However, as most of these optogenetics are responsive to blue light and the animal exhibits avoidance behavior to blue light, the application of optogenetic tools responsive to longer wavelength light has been eagerly anticipated. In this study, we report the implementation in C. elegans of a phytochrome-based optogenetic tool that responds to red/near-infrared light and manipulates cell signaling. We first introduced the SynPCB system, which enabled us to synthesize phycocyanobilin (PCB), a chromophore for phytochrome, and confirmed the biosynthesis of PCB in neurons, muscles, and intestinal cells. We further confirmed that the amount of PCBs synthesized by the SynPCB system was sufficient for photoswitching of phytochrome B (PhyB)-phytochrome interacting factor 3 (PIF3). In addition, optogenetic elevation of intracellular Ca2+ levels in intestinal cells induced a defecation motor program. These SynPCB system and phytochrome-based optogenetic techniques would be of great value in elucidating the molecular mechanisms underlying C. elegans behaviors.
17.

Programming the lifestyles of engineered bacteria for cancer therapy.

red BphS P. aeruginosa Immediate control of second messengers
Natl Sci Rev, 14 Feb 2023 DOI: 10.1093/nsr/nwad031 Link to full text
Abstract: Bacteria can be genetically engineered to act as therapeutic delivery vehicles in the treatment of tumors, killing cancer cells or activating the immune system. This is known as bacteria-mediated cancer therapy (BMCT). Tumor invasion, colonization and tumor regression are major biological events, which are directly associated with antitumor effects and are uncontrollable due to the influence of tumor microenvironments during the BMCT process. Here, we developed a genetic circuit for dynamically programming bacterial lifestyles (planktonic, biofilm or lysis), to precisely manipulate the process of bacterial adhesion, colonization and drug release in the BMCT process, via hierarchical modulation of the lighting power density of near-infrared (NIR) light. The deep tissue penetration of NIR offers us a modality for spatio-temporal and non-invasive control of bacterial genetic circuits in vivo. By combining computational modeling with a high-throughput characterization device, we optimized the genetic circuits in engineered bacteria to program the process of bacterial lifestyle transitions by altering the illumination scheme of NIR. Our results showed that programming intratumoral bacterial lifestyle transitions allows precise control of multiple key steps throughout the BMCT process and therapeutic efficacy can be greatly improved by controlling the localization and dosage of therapeutic agents via optimizing the illumination scheme.
18.

Integration of intermittent calcium signals in T cells revealed by temporally patterned optogenetics.

blue CRY2olig B3Z T cell hybridomas mouse T cells Immediate control of second messengers
iScience, 26 Jan 2023 DOI: 10.1016/j.isci.2023.106068 Link to full text
Abstract: T cells become activated following one or multiple contacts with antigen-presenting cells. Calcium influx is a key signaling event elicited during these cellular interactions; however, it is unclear whether T cells recall and integrate calcium signals elicited during temporally separated contacts. To study the integration of calcium signals, we designed a programmable, multiplex illumination strategy for temporally patterned optogenetics (TEMPO). We found that a single round of calcium elevation was insufficient to promote nuclear factor of activated T cells (NFAT) activity and cytokine production in a T cell line. However, robust responses were detected after a second identical stimulation even when signals were separated by several hours. Our results suggest the existence of a biochemical memory of calcium signals in T cells that favors signal integration during temporally separated contacts and promote cytokine production. As illustrated here, TEMPO is a versatile approach for dissecting temporal integration in defined signaling pathways.
19.

Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation.

blue bPAC (BlaC) PCCL3 Signaling cascade control Immediate control of second messengers
Proc Natl Acad Sci U S A, 19 Jan 2023 DOI: 10.1073/pnas.2208749120 Link to full text
Abstract: cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
20.

Optogenetic Stimulation Array for Confocal Microscopy Fast Transient Monitoring.

blue bPAC (BlaC) rat cortical neurons Immediate control of second messengers
TBioCAS, 6 Dec 2022 DOI: 10.1109/tbcas.2022.3226558 Link to full text
Abstract: Optogenetics is an emerging discipline with multiple applications in neuroscience, allowing to study neuronal pathways or serving for therapeutic applications such as in the treatment of anxiety disorder, autism spectrum disorders (ASDs), or Parkinson's disease. More recently optogenetics is opening its way also to stem cell-based therapeutic applications for neuronal regeneration after stroke or spinal cord injury. The results of optogenetic stimulation are usually evaluated by immunofluorescence or flow cytometry, and the observation of transient responses after stimulation, as in cardiac electrophysiology studies, by optical microscopy. However, certain phenomena, such as the ultra-fast calcium waves acquisition upon simultaneous optogenetics, are beyond the scope of current instrumentation, since they require higher image resolution in real-time, employing for instance time-lapse confocal microscopy. Therefore, in this work, an optogenetic stimulation matrix controllable from a graphical user interface has been developed for its use with a standard 24-well plate for an inverted confocal microscope use and validated by using a photoactivable adenyl cyclase (bPAC) overexpressed in rat fetal cortical neurons and the consequent calcium waves propagation upon 100 ms pulsed blue light stimulation.
21.

Photoactivated adenylyl cyclases attenuate sepsis-induced cardiomyopathy by suppressing macrophage-mediated inflammation.

blue bPAC (BlaC) RAW264.7 Immediate control of second messengers
Front Immunol, 18 Oct 2022 DOI: 10.3389/fimmu.2022.1008702 Link to full text
Abstract: Sepsis-induced myocardiopathy, characterized by innate immune cells infiltration and proinflammatory cytokines release, may lead to perfusion failure or even life-threatening cardiogenic shock. Macrophages-mediated inflammation has been shown to contribute to sepsis-induced myocardiopathy. In the current study, we introduced two photoactivated adenylyl cyclases (PACs), Beggiatoa sp. PAC (bPAC) and Beggiatoa sp. IS2 PAC (biPAC) into macrophages by transfection to detect the effects of light-induced regulation of macrophage pro-inflammatory response and LPS-induced sepsis-induced myocardiopathy. By this method, we uncovered that blue light-induced bPAC or biPAC activation considerably inhibited the production of pro-inflammatory cytokines IL-1 and TNF-α, both at mRNA and protein levels. Further, we assembled a GelMA-Macrophages-LED system, which consists of GelMA-a type of light crosslink hydrogel, gene modulated macrophages and wireless LED device, to allow light to regulate cardiac inflammation in situ with murine models of LPS-induced sepsis. Our results showed significant inhibition of leukocytes infiltration, especially macrophages and neutrophils, suppression of pro-inflammatory cytokines release, and alleviation of sepsis-induced cardiac dysfunction. Thus, our study may represent an emerging means to treat sepsis-induced myocardiopathy and other cardiovascular diseases by photo-activated regulating macrophage function.
22.

An adaptive tracking illumination system for optogenetic control of single bacterial cells.

blue red BphS YtvA P. aeruginosa Transgene expression Immediate control of second messengers
Appl Microbiol Biotechnol, 21 Sep 2022 DOI: 10.1007/s00253-022-12177-6 Link to full text
Abstract: Single-cell behaviors are essential during early-stage biofilm formation. In this study, we aimed to evaluate whether single-cell behaviors could be precisely and continuously manipulated by optogenetics. We thus established adaptive tracking illumination (ATI), a novel illumination method to precisely manipulate the gene expression and bacterial behavior of Pseudomonas aeruginosa on the surface at the single-cell level by using the combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation, and adaptive microscopy. ATI enables precise gene expression control by manipulating the optogenetic module gene expression and type IV pili (TFP)-mediated motility and microcolony formation during biofilm formation through bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) level modifications in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms could be controlled using ATI. Therefore, this novel method we established might markedly answer various questions or resolve problems in microbiology. KEY POINTS: • High-resolution spatial and continuous optogenetic control of individual bacteria. • Phenotype-specific optogenetic control of individual bacteria. • Capacity to control biologically relevant processes in engineered single cells.
23.

A Self-Powered Optogenetic System for Implantable Blood Glucose Control.

red BphS HEK293 Transgene expression Immediate control of second messengers
Research (Wash D C), 16 Jun 2022 DOI: 10.34133/2022/9864734 Link to full text
Abstract: Diabetes treatment and rehabilitation are usually a lifetime process. Optogenetic engineered designer cell-therapy holds great promise in regulating blood glucose homeostasis. However, portable, sustainable, and long-term energy supplementation has previously presented a challenge for the use of optogenetic stimulation in vivo. Herein, we purpose a self-powered optogenetic system (SOS) for implantable blood glucose control. The SOS consists of a biocompatible far-red light (FRL) source, FRL-triggered transgene-expressing cells, a power management unit, and a flexible implantable piezoelectric nanogenerator (i-PENG) to supply long-term energy by converting biomechanical energy into electricity. Our results show that this system can harvest energy from body movement and power the FRL source, which then significantly enhanced production of a short variant of human glucagon-like peptide 1 (shGLP-1) in vitro and in vivo. Indeed, diabetic mice equipped with the SOS showed rapid restoration of blood glucose homeostasis, improved glucose, and insulin tolerance. Our results suggest that the SOS is sufficiently effective in self-powering the modulation of therapeutic outputs to control glucose homeostasis and, furthermore, present a new strategy for providing energy in optogenetic-based cell therapy.
24.

A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation.

blue bPAC (BlaC) mIMCD-3 Immediate control of second messengers
EMBO Rep, 13 Jun 2022 DOI: 10.15252/embr.202154315 Link to full text
Abstract: The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.
25.

An optogenetic tool to recruit individual PKC isozymes to the cell surface and promote specific phosphorylation of membrane proteins.

blue CRY2/CIB1 HEK293T Immediate control of second messengers
J Biol Chem, 31 Mar 2022 DOI: 10.1016/j.jbc.2022.101893 Link to full text
Abstract: The Protein kinase C family consists of several closely related kinases. These enzymes regulate the function of proteins through the phosphorylation of hydroxyl groups on serines and/or threonines. The selective activation of individual PKC isozymes has proven challenging due to a lack of specific activator molecules. Here we developed an optogenetic, blue-light activated PKC isozyme that harnesses a plant-based dimerization system between the photosensitive cryptochrome-2 (CRY2) and the N-terminus of the transcription factor CIB1 (CIBN). We show that tagging CRY2 with the catalytic domain of PKC isozymes can efficiently promote its translocation to the cell surface upon blue light exposure. We demonstrate this system using PKCε and show that this leads to robust activation of a K+ channel (GIRK1/4) previously shown to be activated by PKCε. We anticipate that this approach can be utilized for other PKC isoforms to provide a reliable and direct stimulus for targeted membrane protein phosphorylation by the relevant PKCs.
Submit a new publication to our database